Objectives of the study

- To classify cloud mixtures observed by MODIS into “cloud regimes” (CRs) by performing clustering analysis on daily p_c-τ joint histograms.
- To explore the nature of the regimes using other coincident observations.
- To understand regime radiative and hydrological importance.

The MODIS cloud regimes

- 10 years of MODIS Terra-Aqua C5.1 daily p_c-τ joint histograms were used.
- Global CRs were derived using clustering analysis, similarly to prior work based on ISCCP histograms.

What active observations tell us about the regimes

We use CloudSat/CALIPSO data as aggregated in the C3M product to examine how the MODIS regimes are viewed by active sensors. We use only Aqua CR occurrences to perform this compositing in order to achieve better spatiotemporal matching.

Meteorology associated with MODIS CRs

We composite 500 hPa vertical velocity from MERRA and AIRS/MERRA temperature and RH anomaly profiles in order to glean relationships between MODIS CRs and meteorology.

Regime cloud radiative effect breakdown

We are interested in the SW, LW and net CRE of the MODIS regimes, in order to delineate their radiative distinctiveness, radiative importance, and influence on atmospheric heating. We use CERES SYN 1 deg combined Terra-Aqua diurnal averages for the compositing of gridcells with the same Terra and Aqua CR.

Regime rainfall

Similarly to CRE we also composite GPCP 1 deg daily precipitation to get insight into the hydrological importance of MODIS CRs.