Bias in MODIS cloud drop effective radius for oceanic water clouds as deduced from measured cloud optical thickness variability across scattering angles

J. Geophys. Res. (in press, shortly)

Larry Di Girolamo
Department of Atmospheric Sciences
University of Illinois at Urbana-Champaign, Urbana, IL, USA

Lusheng Liang and Wenbo Sun
Science Systems and Applications Inc., Hampton, VA

MODIS Science Team Meeting
May 18-22, 2015
For MODIS-VIIRS-type systems, the Nakajima and King (1990)-type retrievals of cloud optical depth (τ) and effective radii (Re) remains the state-of-the-art and is rooted in the 1-D RT assumption.

- Passive retrievals rooted in 3-D RT are decades away for global products

We have a good handle on random errors under 1-D RT formulation from Platnick et al. (2004)… reported in product.

- These errors match those had by observations for $H\sigma \sim 0$ (Di Girolamo et al. 2010)

Systematic errors, principally from the breakdown of 1-D RT for heterogeneous clouds, remain largely unknown in any global sense.

- Marshak et al. (2006): Re overestimate by ~ factor of 2 are possible

- Painemal and Zuidema (2011) Re bias ~ +1 to 2 µm
 Stratocumulus, high sun

- Haney (2013) Re bias ~ +7 to 12 µm
 Trade Cumulus, high sun
How do we characterize the Re bias over the globe?

![Graph showing Optical Depth vs. Scattering Angle with $\tau = 8$, $Re = 10 \, \mu m$]
“Rainbow-dips” in the observations would indicate an **overestimate** of the retrieved Re.

```
+ bias in $Re$
```

```
- bias in $Re$
```

“Rainbow-bumps” in the observations would indicate an **underestimate** of the retrieved Re.
Latitude bins = 2.5°

Solar zenith angle bins = 1°

$\Delta x = x - \langle x \rangle$

$\langle x \rangle = \text{mean within lat-SZA bin}$
MODIS Terra: January only, 2001-2012

Traditionally interpreted as 3-D effects

Loeb and Coakley (1998)
Varnai and Marshak (2007)
Liang and Di Girolamo (2013)
Horvath et al. (2014)
The presence of the “rainbow-dip” unequivocally shows the presence of a positive bias in the MODIS Re2.1 product
Collocated MISR + MODIS on Terra

Collocated MISR + MODIS on Terra

Aft Cameras
- 70.5° (DA)
- 60.0° (CA)
- 45.5° (BA)
- 26.5° (AA)
- 0° (AN)

Forward Cameras
- 70.5° (DF)
- 60.0° (CF)
- 45.5° (BF)
- 26.5° (AF)
- 0° (AN)
- For each SZA-latitude bin, take true $\tau = \text{mean } \tau$ from AN camera

- Assume $\text{true } Re = F_c \times Re_{2.1}$

- These are used in 1-D RT calculations to produce 0.866 μm BRFs at the MISR sun-view geometries

- Use these BRFs and $Re_{2.1}$ to retrieve τ
This range of F_c best matches the observations (i.e., a high bias of 20 to 60% in the zonal mean $Re2.1$)
This range of F_c best matches the observations (i.e., a high bias of 20 to 60% in the zonal mean $Re2.1$)
Use MISR observations at any two points that are part of the rainbow dip.

But there's τ variation due to 3D effects!

MISR retrieved τ using MODIS $Re_{2.1} = 18 \, \mu m$

Use $Re = Re_{2.1} \times F_c$

Iterate

- $F_c = 1.00$
- $F_c = 0.99$
- $F_c = 0.98$
- $F_c = 0.56$

$Re = 18 \, \mu m \times 0.56 = 10 \, \mu m$

Biased... Argh!!!
Fortunately, in many latitude bins, MISR observes both sides of the rainbow dip from multiple camera pairs.

- Amplitude is enhanced by 3D
- Retrieval of F_c biased low
- Overestimate of Re bias

So while we can’t compute a zonal mean bias in retrieved Re, we can put bounds on it.

- Amplitude is reduced by 3D
- Retrieval of F_c biased high
- Underestimate of Re bias
Red = lower bound of zonal mean Fc computed from all SZA bins within a latitude bin
Blue = upper bound of zonal mean Fc computed from all SZA bins within a latitude bin
Green = midpoint of upper and lower bound

Zonally varying MODIS $Re_{2.1}$ bias of ~ 3 to 11 μm in zonal mean values
Red = lower bound of zonal mean Fc computed from all SZA bins within a latitude bin
Blue = upper bound of zonal mean Fc computed from all SZA bins within a latitude bin
Green = midpoint of upper and lower bound

Zonally varying MODIS $Re_{1.6}$ bias of ~3 to 11 µm in zonal mean values

January
Red = lower bound of zonal mean \(F_c \) computed from all SZA bins within a latitude bin
Blue = upper bound of zonal mean \(F_c \) computed from all SZA bins within a latitude bin
Green = midpoint of upper and lower bound

Zonally varying MODIS \(Re_{3.7} \) bias of \(\sim 2 \) to 7 \(\mu \)m in zonal mean values
Bias corrected mid-point of bounds

January
Summary

- Through MISR-MODIS fusion, we established bounds on the zonally mean bias in the samples of the MODIS-retrieved \(R_e \)

- Midpoints of bounds indicate \(\sim 3 \) to \(11 \) \(\mu \)m bias in zonal mean MODIS \(R_{e1.6}, R_{e2.1}, R_{e3.7} \) values (bias of \(R_{e3.7} < R_{e2.1} \sim R_{e1.6} \))

- Bias-corrected \(R_e \) channel differences are much smaller than original

- Large meridional differences between original and bias-corrected \(R_e \)

What’s Next for MODIS \(R_e \) Bias Correction?

- Quantification that gets at the mean bias rather than its bounds

- New MISR-MODIS fusion (i.e., Terra) product?

- Regress MISR-MODIS retrieved \(R_e \) bias against variables that MODIS can measure (radiances, texture, \(\tau \), SZA, etc)… Collection 7?
Thanks!

NASA Contract NNX14AJ27G

Cal Tech/JPL MISR Project

NASA Langley Research Center Atmospheric Sciences Data Center

Level 1 and Atmosphere Archive and Distribution System of NASA Goddard Space Flight Center