Differences in penetration depth for MODIS and RSP/VIIRS spectral ice cloud effective particle size retrievals

Bastiaan van Diedenhoven

- Columbia University-

-NASA GISS-
SWIR bands and absorption
RSP data from the SEAC4RS campaign

- Convective clouds only
- COT > 5 only

Using 2.25 μm channel
Using 1.59 μm channel
RSP data from the SEAC4RS campaign

- Convective clouds only
- COT>5 only

Using 2.25 μm channel
Using 1.59 μm channel

~Level of neutral buoyancy
Vertical weighting functions

- Defined as in Platnick (2000)
- Homogeneous layers
Vertical weighting functions: Larger particle size

- Defined as in Platnick (2000)
- Homogeneous layers
Vertical weighting functions: Larger asymmetry parameter

- Defined as in Platnick (2000)
- Homogeneous layers
Vertical weighting functions: Higher sun

- Defined as in Platnick (2000)
- Homogeneous layers
RSP data from the SEAC4RS campaign

- Convective clouds only
- COT>5 only
- 2.25 micron channel sees (optically) deeper into cloud

Using 2.25 μm channel
Using 1.59 μm channel
Optical depth \rightarrow physical depth

Dense cloud top

Diffuse cloud top
Probing cloud top ‘diffuseness’ with lidar

Lidar Penetration depth:
\[H(\tau = 0.1) - H(\tau = 3) \]
Difference between SWIR band retrievals depends on ‘diffuseness’ of top

Lidar Penetration depth:
\[H(\tau = 0.1) - H(\tau = 3) \]
Difference between SWIR band retrievals depends on ‘diffuseness’ of top
MODIS+POLDER retrievals at TWP

- Vertical variation of effective radius and asymmetry parameter varies

From van Diedenhoven et al., JGR, 2014
Conclusions

- MODIS vs VIIRS will depend on cloud top structure.
- MODIS vs VIIRS will depend on g (higher in warm clouds)
- MODIS vs VIIRS will depend on geometry
- Smallest differences expected for dense, cold convective cloud tops clouds near LNB
Suggestion

- Use two (or more) SWIR bands to retrieve
 - Effective radius at specific level (e.g., OD=1)
 - Linear slope of effective radius w.r.t. optical depth

- Benefits:
 - Comparison between sensors more straightforward
 - Easier to use for model evaluation
 - Paring with lidar allows estimate of slope w.r.t. to physical height/temperature
 - Can also be applied to liquid clouds?
SWIR bands and absorption