
MODIS & VIIRS Ocean Science Team Break-out

MODIS Science Team Meeting 19-22 May 2015, Silver Spring, MD

Ocean Break-out Agenda

May 20

Overvi	rview and Status				
1:30	Bryan Franz	Overview of Science Team & Ocean SIPS			
	Gene Feldman				
	Gene Eplee	Status of MODIS and VIIRS OC & SST production			
	Gerhard Meister				
	Fred Patt	Status of instruments and calibration			
		- VIIRS calibration update (GE)			
		- MODIS calibration update (GM)			
		- SeaWiFS calibration update (FP)			
		Questions/Discussion			
3:00	Break				
Data P	roduct Quality				
3:20	Brian Barnes	Cross-sensor continuity between SeaWiFS, MODIS/Aqua, and VIIRS			
		over the Gulf of Mexico			
3:40	Lian Feng and	Effects of bright-target adjacency on TOA radiance and ocean color			
	Chuanmin Hu	products: A statistical assessment			
Data P	roduct Applications				
4:00	Watson Gregg	Using S-NPP VIIRS ocean chlorophyll in a global model			
4:20	Greg Silsbe	Net Primary Production modeling from satellite			
4:40	Chuanmin Hu	Comparison of MODIS and VIIRS in detecting harmful Karenia brevis			
		blooms in the NE Gulf of Mexico: A case study			
5:00		Discussion			

Ocean Break-out Agenda

May 21

Standa	rd Product Suite	
1:30	Zhongping Lee	Discussion of Ocean Color products, what should we produce
2:30		Break
2:40	Prabhat Koner	Predicted vs observed results for different channel combinations, information content and operational error for multi-sensors SST retrievals
3:00	Peter Minnett	Discussion of SST products and algorithms, what should we produce, what is the algorithm status, how can proposed approaches complement.
		Peter Minnett - MODIS continuity algorithm
		Andy Harris - deterministic inverse method for SST retrieval Kyle Hilburn - analysis and mitigation of atmospheric crosstalk
3:30		Discussion

A.28 The Science of Terra and Aqua A.46 Terra and Aqua – Algorithms – Existing Data Products

PI	Proposal Title
Bryan Franz	Ocean Discipline Lead
Barney Balch	Integrating the MODIS PIC Product Into the Climate Data Record
	Maintenance and Refinement of the MODIS Algorithm for Particulate Inorganic Carbon
Mike Behrenfeld	Global Ocean Phytoplankton Carbon and Physiology With MODIS-Aqua
Scott Doney	Multi-Scale Satellite Analysis of the Biophysical Dynamics Governing Ocean Phytoplankton Community Structure
Bryan Franz	Maintenance and Quality Assessment of Remote Sensing Reflectance, Chlorophyll, and Diffuse Attenuation Products to Support MODIS Ocean Color Science
Robert Frouin	Improvements to the MODIS Standard Ocean PAR Product
	*Retrieval of Marine Reflectance From MISR Data
Chuanmin Hu	Maximize MODIS Potentials for Near Real-Time Ocean Applications Through Developing and Refining Novel Algorithms and Products
	Establish a Multi-Sensor Climate Data Record of Ocean Chlorophyll-A Concentrations Using a Novel Algorithm Concept
Zhongping Lee	Development of New Solar Radiation and Primary Production Products from MODIS Ocean-Color Measurements
Peter Minnett	The Forward Solution to Sea-Surface Temperature Retrieval From MODIS Measurements
	Continued Maintenance and Minor Refinement of Algorithms for Deriving SST From MODIS
Norm Nelson	Bermuda Bio-Optics Project: Continuation of Time-series and Retrospective Data Analysis
Dave Siegel	Plumes and Blooms: A Multi-Decadal Coastal Bio-Optical Time-series and Retrospective Data Analysis
Crystal Thomas/ Antonio Mannino	Support of NASA Ocean Biology and Biogeochemistry Research With Quality Assured HPLC Pigment Analysis
Jeremy Werdell	Advancing the Retrieval of Marine Inherent Optical Properties From Satellite Ocean Color Radiometry
Toby Westberry	A Next-Generation Net Primary Production Model for Application to MODIS Aqua
	Refinement of Global MODIS Chlorophyll Fluorescence Quantum Yields

A.29 Suomi National Polar-orbiting Partnership Science Team

PI	Proposal Title
Carlos Del Castillo	Ocean Discipline Lead
Barney Balch	Use of Suomi NPP for deriving science data records of ocean particulate inorganic carbon concentration: algorithm improvements, product validation and achieving continuity with the EOS product
Bryan Franz	Extension of the MODIS Ocean Color Time-Series to S-NPP/VIIRS: Marine Remote Sensing Reflectance and Derived Products
Robert Frouin	Development of a Science Quality Ocean Surface PAR Product from NPP VIIRS Data
Watson Gregg	Combining Data Assimilation with an Algorithm to Improve the Consistency of VIIRS Chlorophyll: Toward a Multidecadal, Multisensor Global Record
Andy Harris	New Physically Based Sea Surface Temperature Retrievals for NPP VIIRS
Chuanmin Hu	Refine and Improve Suomi NPP Chlorophyll a and Other Ocean Color Data Products Using a Novel Algorithm Concept
Zhongping Lee	Upgrade the Kd(490) Product to the Normalized Diffuse Attenuation Coefficient at 490 nm (nKd(490)) for Suomi NPP
Peter Minnett	Sea-Surface Temperature from VIIRS - Extending the MODIS Time Series for Climate Data Records
Frank Wentz	Analysis and Mitigation of Atmospheric CrossTalk in VIIRS SST Retrievals

MODIS and VIIRS Ocean Science Team

26 Selected Proposals 16 Unique PIs

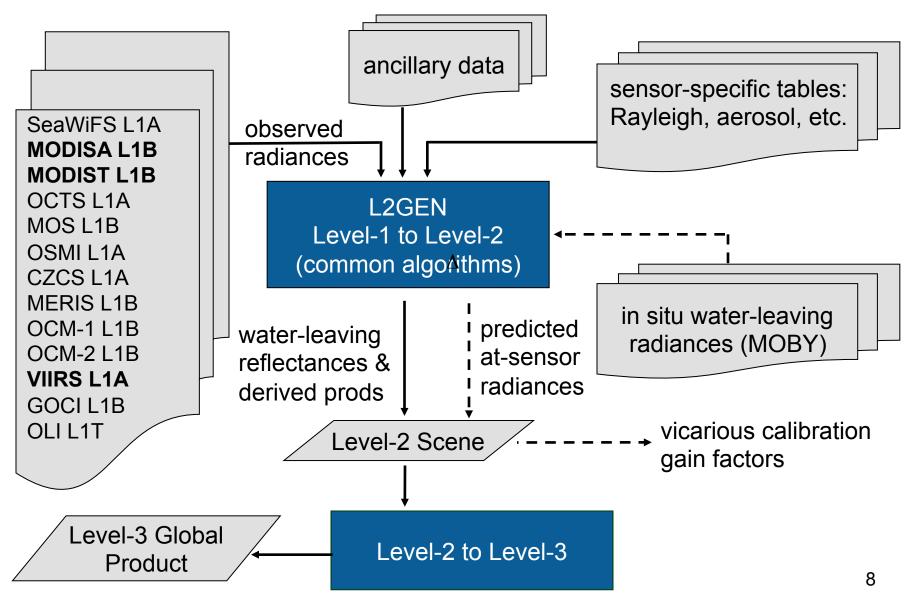
Organization

Program Scientist (S-NPP & MODIS, etc., etc.) Paula Bontempi

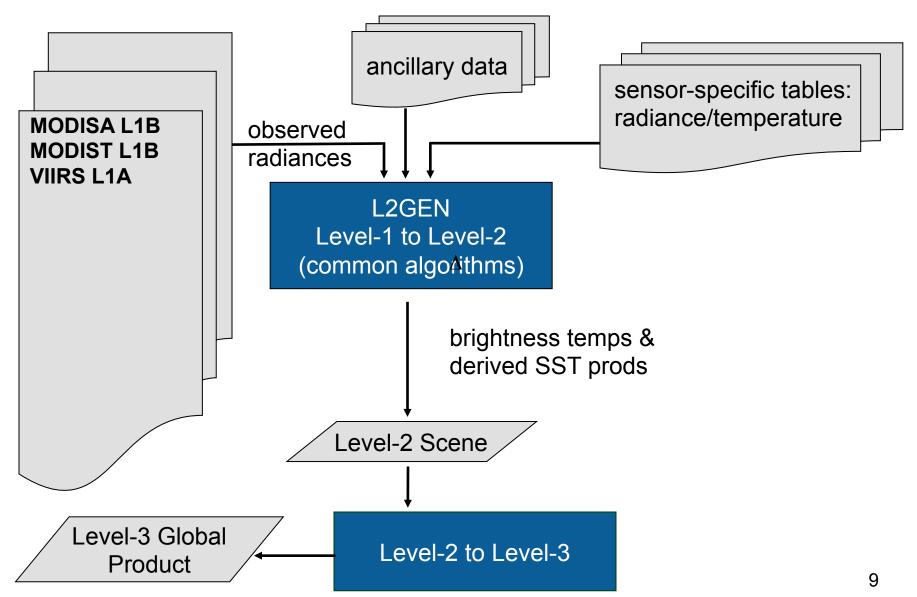
Science Team Leaders Michael King (MODIS) Jim Gleason (VIIRS, S-NPP Project Scientist)

Science Team Ocean Discipline Leaders Bryan Franz (MODIS) Carlos Del Castillo (VIIRS)

Ocean SIPS (MODIS & VIIRS, Implementation and Processing) Gene Feldman & Bryan Franz


DAAC (MODIS & VIIRS, Archive and Distribution) OB.DAAC (Gene Feldman & Sean Bailey, Ocean Color) PO.DAAC (Robert Toaz & Ed Armstrong, SST) **Product Development and Documentation**

Standard, Evaluation, and Test Products


- a standard product is one that the SIPS is committed to maintain, and the DAAC is committed to archive and distribute, at the ultimate discretion of Program Management
- an evaluation product is one that the SIPS/DAAC may produce and distribute, if resources allow, to support community assessment of a new product or alternative product algorithm
- a **test product** is one that the SIPS may produce to support the algorithm PI in implementation verification and product testing

in practice, OC standard products are made at Level-2 and Level-3, while eval products are made only at Level-3 (usually from Level-3 Rrs dailies).

OC Implementation NASA Standard Processing Code

SST Implementation NASA Standard Processing Code

Product Documentation

- MODIS has historically required that every standard product have associated with it an Algorithm Theoretical Basis Document (ATBD)
- The original MODIS ATBDs are extremely out of date and in many cases they are not relevant to current standard products
- This is largely due to the fact that the MODIS processing was awarded to the NASA OBPG in 2004 with the mandate to adopt the SeaWiFS heritage processing, as documented in SeaWiFS TMs
- It is also the case that the ocean algorithms are predominantly sensor-independent, evolved from broad community contributions
- To satisfy NASA Program Management and better serve the research community, we need to establish a new set of product documentation for the current standard product suite of MODIS & VIIRS, and maintain that level of documentation going forward
- To that end, Ocean SIPS is developing a set of online documents that can be easily updated and will include dynamic links to ensure that implementation and validation information remains current

Product and Algorithm Description Document standardized elements

- Product Summary
 - defines what it is and what it's for
- Algorithm Description
 - as detailed as necessary to ensure full traceability to algorithm basis and heritage (e.g., links to published literature)
 - if applicable to multiple sensors, include any sensor-specific modifications required (e.g., adjustments for band passes)
 - algorithm failure conditions and associated product flags
- Implementation
 - how is the product distributed (product suite, file-types, encoding)
 - direct links to source code and/or software flow charts

Product and Algorithm Description Document standardized elements

- Assessment
 - validation analyses (e.g., direct link to dynamic match-ups)
 - uncertainties
- References
 - links to previous ATBD(s) or TM(s), if relevant
 - links to published literature (DOIs)
- Product History
 - document version (date)
 - product change log

Product Description Documents

View the Legacy Website

Algorithm Descriptions

The Ocean Biology Processing Group (OBPG) produces and distributes a standard suit products for all compatible sensors at Level-2 and Level-3, plus sea surface temperatu MODIS. The OBPG also produces a suite of Level-3 evaluation products. Description: these standard and evaluation products are provided below.

Standard Ocean Color Products

Chlorophyll a (chlor_a; mg m⁻³)

The concentration of the photosynthetic pigment chlorophyll a.

Diffuse attenuation coefficient for downwelling irradiance at 490 nm (Ko The diffuse attenuation coefficient for downwelling irradiance over the first optical at

Inherent Optical Properties (IOPs; m⁻¹) The spectral marine absorption and backscattering coefficients of water column com-

Particulate Organic Carbon (POC; mg m⁻³) The concentration of particulate organic carbon.

Particulate Inorganic Carbon (PIC; mol m⁻³) The concentration of particulate inorganic carbon.

Photosynthetically Available Radiation (PAR; Einstein $m^{-2} d^{-1}$) Daily mean photosynthetically available radiation (PAR) at the ocean surface.

Instantaneous Photosynthetically Available Radiation (iPAR; Einstein m⁻¹ PAR the ocean surface at the time of the satellite observation. MODIS only.

Normalized Fluorescence Line Height (nFLH; mW cm⁻² µm⁻¹ sr⁻¹) Relative measure of water-leaving radiance associated with chlorophyll fluorescence.

Remote Sensing Reflectance (Rrs; sr⁻¹)

The at-surface spectral remote-sensing reflectances observed by the satellite instrume correction. The aerosol optical thickness and Ångstrom data products are also describ

Standard Sea Surface Temperature Products

11 µm Sea Surface Temperature (SST; °C) Sea surface temperature derived from long-wave (11-12 µm) thermal radiation. MODIS only.

4 µm Sea Surface Temperature (SST4; °C)

Sea surface temperature derived from short-wave (3-4 µm) thermal radiation. MODIS only.

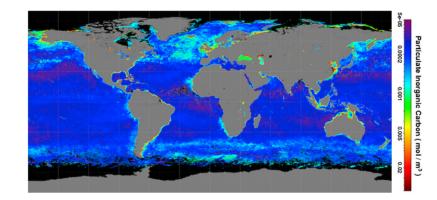

Particulate Inorganic Carbon (PIC)

Table of Contents

- 1. Product Summary
- 2. Algorithm Description
- 3. Implementation
- 4. Assessment
- 5. References

1 - Product Summary

This algorithm derives the concentration of particulate inorganic carbon (PIC) in mol m⁻³, calculated using observed in situ relationships between water-leaving radiances, spectral backscattering coefficients, and concentrations of PIC (i.e., calcium carbonate or calcite). Algorithm implementation is contingent on the availability of sensor bands near 443 and 555nm. The algorithm is applicable to all current ocean color sensors. The PIC product is included as part of the standard Level-2 OC product suite and the Level-3 PIC product suite.

MODIS Aqua PIC seasonal composite for Spring 2014

2 - Algorithm Description

The PIC algorithm is a hybrid of two independent approaches, defined here as the 2-band approach (Balch et al. 2005) and the 3-band approach (Gordon et al. 2001). The 3-band approach is used when the 2-band approach fails.

Input:

2-band approach Normalized water-leaving radiances in two bands near 443 and 555 nm.

3-band approach Spectral top-of-atmosphere reflectances at three wavelengths near 670, 750, and 870 nm

Output:

pic, the concentration of particulate inorganic carbon in mol m⁻³

The 2-Band Approach:

The algorithm makes use of a precomputed look-up table, derived from in situ measurements, that contains the total backscattering coefficient for calcite at 546 nm, b_{bc} (546) in m⁻¹, as a function of nLw(443) and nLw (555). The concentration of calcite (PIC) is computed by dividing b_{bc} (546) by a calcite-specific backscattering

coefficient (1.628 m² mol⁻¹), as also derived from in situ measurements.

In cases where nLw(555) is not available (OCTS, MODIS, MERIS, etc.), it is estimated from the closest native green wavelength (547, 560, and 565 nm, etc.) using the empirical relationships described here.

The 2-band algorithm may fail to retrieve PIC for two primary reasons: 1) the normalized water-leaving radiances could not be retrieved due to atmospheric correction failures or other masking conditions (e.g., clouds or land), and 2) the retrieved water-leaving radiances may be outside the range of values in the precomputed LUT. A common reason for either of these conditions is that the PIC concentration is very high, which can result in large water-leaving radiance signals in the near infrared channels that lead to poor or failed atmospheric correction. In some cases the signal is so strong in the near infrared that the observation is flagged and masked as a cloud. When these failures occur, the algorithm will attempt a retrieval using the 3-band approach, which uses a simple atmospheric correction that is more robust over bright waters.

The 3-Band Approach:

Observed TOA radiances, Lt(λ), at three spectral bands near 670, 765, and 865 nm are converted to reflectance and then elated to the components of the radiant path reflectance through:

$$\rho_t(\lambda) = (\rho_r(\lambda) + t_s(\lambda) \times \rho_f(\lambda) \times t_s(\lambda) \times \rho_w(\lambda) + \rho_a(\lambda))t_{g_0}(\lambda)$$

where:

 $\rho_t(\lambda)$ is top-of-atmosphere reflectance (measured), $\rho_r(\lambda)$ is reflectance due to Rayleigh scattering in the absence of aerosols (calculated), $\rho_f(\lambda)$ is reflectance due to whitecaps and foam (calculated), $t_s(\lambda)$ is diffuse transmittance of the atmosphere from surface to sensor (calculated), $t_g(\lambda)$ is atmospheric gas transmittance. Sun to surface to sensor (calculated), $\rho_w(\lambda)$ is water-leaving reflectance (unknown), and $\rho_a(\lambda)$ is aerosol reflectance (unknown).

Aerosol and water-leaving reflectances can be expressed roughly as:

$$\rho_a(\lambda) \approx \rho_a(\lambda_0) \times \exp(a \times (\lambda_0 - \lambda))$$

and

$$\rho_{_W}\left(\lambda\right)\approx \tfrac{b_{b}\left(\lambda\right)}{6.179\times \left(a_{_W}\left(\lambda\right)+b_{b}\left(\lambda\right)\right)}$$

where:

 a_w is the absorption coefficient of seawater, b_b is the total backscattering coefficient, and $\lambda_0 = 865$ nm. Backscattering by calcite and seawater can be roughly expressed as:

$$b_b(\lambda) \approx b_{bc}(546) \times \left(\frac{546}{\lambda}\right)^{1.35} + b_{bw}(\lambda)$$

Through an iterative procedure, seeded by setting the backscattering coefficients to their pure seawater values, values for $\rho_a(865)$ and *a* can be retrieved, and ultimately the backscattering coefficient for calcite at 546 nm, $b_{bc}(546)$ can be derived. The concentration of calcite (PIC) is then computed by dividing $b_{bc}(546)$ by an *a* priori calcite-specific backscattering coefficient (1.628 m² mol⁻¹).

Algorithm Description

Sensor-specific details:

As noted, the 2-band algorithm uses a common look-up table define for nLw(443) and nLw(555), and adjusts the satellite nLw retrievals as needed to account for sensor-specific differences in center wavelength relative to the look-up table indices. For the 3-band approach, the atmospheric properties and water optical properties are computed at the sensor specific band passes in the red and near-infrared, and thus the sensor differences are inherent in the implementation. The actual wavelengths used for the various sensors are shown in the table below, with the 3-band algorithm center wavelengths in parentheses.

SeaWiFS	443, 555 (670, 765, 865)
MODIS	443, 547 (667,748,869)
MERIS	443, 560 (665, 779, 865)
VIIRS	443, 551, (671, 751, 862)

Failure conditions:

The PIC product is not computed if the Level-2 flags indicate LAND, HIGLINT or CLOUDS. A failure condition is indicated in Level-2 by setting the PIC value for that pixel to the _FILLVALUE and setting the Level-2 flags to indicate PRODFAIL.

Implementation Details

3 - Implementation

1		
1	Product Short Name	pic
1	Level-2 Product Suite	oc
1	Level-3 Product Suite	PIC
1	Level-3 Masking	ATMFAIL,LAND,HISATZEN,STRAYLIGHT,CLDICE,LOWLW, NAVWARN,ATMWARN, HISOLZEN,NAVFAIL,FILTER,HIGLINT
1		

For further details on the implementation, go to the algorithm source code or the graphical description of the algorithm implementation in the NASA ocean color processing code (l2gen).

Main Page	Related Pages	Modules	Namespaces	Classes	Files		
File List	File Members						
huild/src	/l2gen/calcite	c File Refe	erence				Defines Function
bullu, sic	/ Lgen/ culeite	.e i ne nen	crence				
				(r11331/r10	0609)		
finclude <st< th=""><td>dlib.ba</td><td></td><td></td><td></td><td></td><td></td><td></td></st<>	dlib.ba						
#include <ma< th=""><td>th.h></td><td></td><td></td><td></td><td></td><td></td><td></td></ma<>	th.h>						
finclude "11							
finclude "12	_flags.h"						
nclude depen	dency graph for calcit	e.c:					
			ſ	build/src/l2ger	n/calcite.c		
			L	buildistelizgei	ing concisione		
				///	A		
			/		1/		
			/ г	l12_proto.h	1		
			/ L	112_proto.n	$I \setminus$		
				$\langle \rangle$	$\langle \rangle$		
			stdlib.h	math.h	12_flags	-	
			scalb.n	math.h	12_nags	<u>.n</u>	
Go to the sour	ce code of this file.						
Defines							
	CACO3 BAD_FLT						
#define N44							
#define N55	0 456						
Functions							
float get	bbstar (float lat)						
	ite_3b (l2str *l2rec, i						
	ite_2b (l2str *l2rec, i						
	ite_c (l2str *l2rec, in						
void calc	ite (I2str *I2rec, I2pr	odstr *p, float p	prod[])				

Main Pag	Related Pages	Modules	Namespaces	Classes	Files		
File List	File Members						
build/s	build/src/l2gen/calcite.c (r11331/r10609)						
Go to the do	cumentation of this fil	e.					
	calcite.c = get c	alcium carbona	ate concentratio	n.		•/	
00003 /*						-/	
00004 /*						•/	
00005 /*				mplete scan	after	*/	
00006 /*		heric correct:	ion.			-/	
	Outputs: caco3 - calciu	n annhonata av		a nivel		4	
00009 /*	cacos = calciu	m carbonate co	oncentration, pe	er pixei	•	4	
	Written by: W. Rob	incon. cec. 7	Tup 2000			+/	
00011 /*			aly 2004, conver	sion to C.		-/	
00012 /*			p 2004, sensor q		n and	-1	
00013 /*			of 2-Band algori			+/	
00014 /*						+/	
00015 /*-						-+/	
00016							
00017 #is	clude <stdlib.h></stdlib.h>						
00018 #in	clude <math.h></math.h>						
00019 #ir	clude "112_proto.h						
00020 #is	clude "12_flags.h"						
00021							
00022							
	fine BAD_CACO3 BAD	FLT					
00024							
	tic float pi						
	tic float radeg						
	tic int32_t caco3 tic float caco3min						
	tic float bbstar =		/* bcb */				
00030	tele iloat bostar =	4.0;	7- BCD -7				
						•/	
	calcite 3b() - cal						
00033 /*		eres en avenue		and a second		•/	
	Gordon, H.R. Boynt	on, G.C., Bald	ch. W.M., Groom.	S.B., Harbo	ur. D.S.		
	Smyth, T.J., Retri						
	SeaWiFS Imagery, G					•/	
00037 /*						•/	
00038 /*						•/	
00039							
00040 flo	at get_bbstar(floa	t lat) (
00041	static float c[]	= {8.701E-01,	1.200E-01,-5.999	E-04,-6.606E	-04,		
00042	4.202E-05	,-1.150E-06,1	.614E-08,-1.138E	-10,3.196E-1	3);		

Assessment

	SeaBASS				SeaBASS Search
	Home Data Users - Data Contributors - Data Se	arch NOMAD Data Arc	chive Wiki Lists -	Contact Us	
	MODIS Aqua vs. In situ				
	Dates	1930-01-01 to 2015-05-08			
111.0	Date Archived	2000-01-01 to 2015-05-08			
p validation results are av	North	90			
and Storage System (Seal	South	-90			
	West	-180			
	East	180			
	Depth	0 to 10000			
	Output products	pic			
	Investigator/Experiment/Cruise	ALL			
	Data Source	seabass			
	Minimum valid satellite pixels	50			
	Maximum solar zenith angle	70			
	Maximum satellite zenith angle	56			
	Maximum time difference between satellite and in situ	3			
	Maximum coefficient of variation of satellite pixels	0.15			
	Maximum irradiance difference between measured and modeled	20			
	Maximum windspeed	35			
	Satellite version	R2013.1			
	Most Recent Data Update	2014-11-07 16:20:27			
	Permalink Back to Validation Search Search Results				
	Total number of matchups: 17 Date format is YYYY-MM-DD, time format is HH:MM:SS, a Only products with matchups will be displayed.	nd times are GMT.			
	pic Download Stats/Plots Generate Data File (.csv) Download D Statistics Data	lata File			
		Best	Fit Best Fit		Abs %
	Product Name MODIS Aqua Range In situ Ra	nge # Slope	Intercept R ²	Median Ratio	Difference RMSE 70.51802 0.00027

4 - Assessment

A limited set of Level-2 satellite-to-in-situ match-up validation results are av validation tool of the SeaWiFS Bio-Optical Archive and Storage System (Seal are provided below.

- SeaWiFS
- MODIS Aqua
- MODIS Terra
- VIIRS
- OCTS
- CZCS
- MERIS

Product Lifecycle

from concept to standard product

- 1. PI develops new algorithm or modification, demonstrates feasibility, perhaps publishes results.
- 2. If PI and Ocean Team Leader agree, PI works with SIPS to implement in NASA processing code and to develop a test plan for verification and large-scale testing.
- 3. If PI is satisfied with implementation tests, and SIPS confirms that **required computing resources are available**, evaluation products and documentation will be produced and distributed, and the algorithm will be incorporated into SeaDAS.
 - a. PI works with SIPS to develop or update the Product Description Document (to be hosted under "evaluation products").
 - b. SIPS/DAAC begins production and distribution of product
 - c. PI performs assessment of results (validation, global dist., trends)
- 4. Before the next mission reprocessing opportunity, PI/SIPS/DAAC and Program Management review the performance evaluation, documentation, and appropriateness for standard production.

MODIS & VIIRS Ocean Processing Status

2014.0 Multi-Mission Ocean Reprocessing

Scope

- OC from CZCS, OCTS, SeaWiFS, MERIS, MODIS(A/T), and VIIRS
- SST from MODIS

Motivation

- 1. improve interoperability and sustainability of the product suite by adopting modern data formats, standards, and conventions
- 2. incorporate algorithm updates and advances from community and last MODIS Science Team developed since 2010 (last alg. update).
- 3. incorporate knowledge gained in instrument-specific radiometric calibration and updates to vicarious calibration

Status

- OC from OCTS & VIIRS done, MODISA in progress
- SST from MODISA and MODIST done (not yet released)

R2014.0 Changes to OC Standard Product Suite

Level-2 OC Product Algorithm Changes

-		
1.	R _{rs} (λ)	calibration updates, ancillary data updates, improved
2.	Ångstrom	land/water masking, terrain height, other minor fixes
3.	AOT	λ = 412, 443, 469, 488, 531, 547, 555, 645, 667, 678
4.	Chlorophyll a	new algorithm (Hu et al. 2012)
5.	K _d (490)	coefficient update
6.	POC	no change
7.	PIC	updated algorithm and LUT
8.	CDOM_index	remove product (redundant with new IOP suite)
9.	PAR	consolidated algorithm, minor fixes
10.	iPAR	MODIS-only, no change
11.	nFLH	MODIS-only, flagging changes (allow negatives)
12.	IOPs	added suite of inherent optical property products (Werdell et al. 2013)

R2014.0 VIIRS OC Standard Product Suite

Level-2 OC Product Algorithm Reference

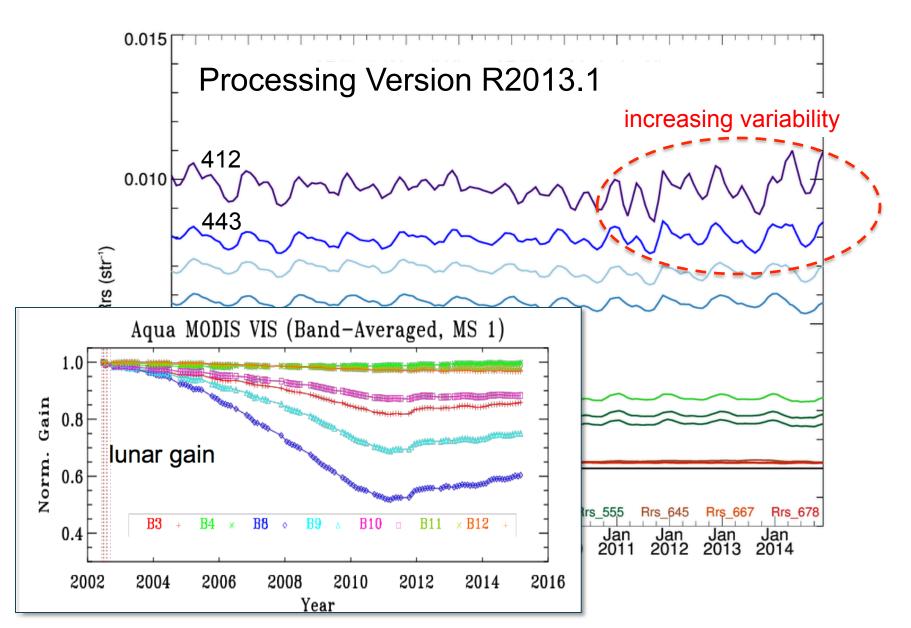
1.	R _{rs} (λ)	Spectral water-leaving reflectance and derived
2.	Ångstrom	aerosol optical properties
3.	AOT	λ = 410, 443, 486, 551, 671
4.	Chlorophyll a	Phytoplankton chlorophyll concentration
5.	K _d (490)	Marine diffuse attenuation at 490nm
6.	POC	Particulate organic carbon concentration
7.	PIC	Particulate inorganic carbon concentration
8.		
9.	PAR	Daily mean photosynthetically available radiation
10.		
11.		
12.	IOPs	Suite of inherent optical property products (Werdell et al. 2013)

Expanded Product Suite - IOPs

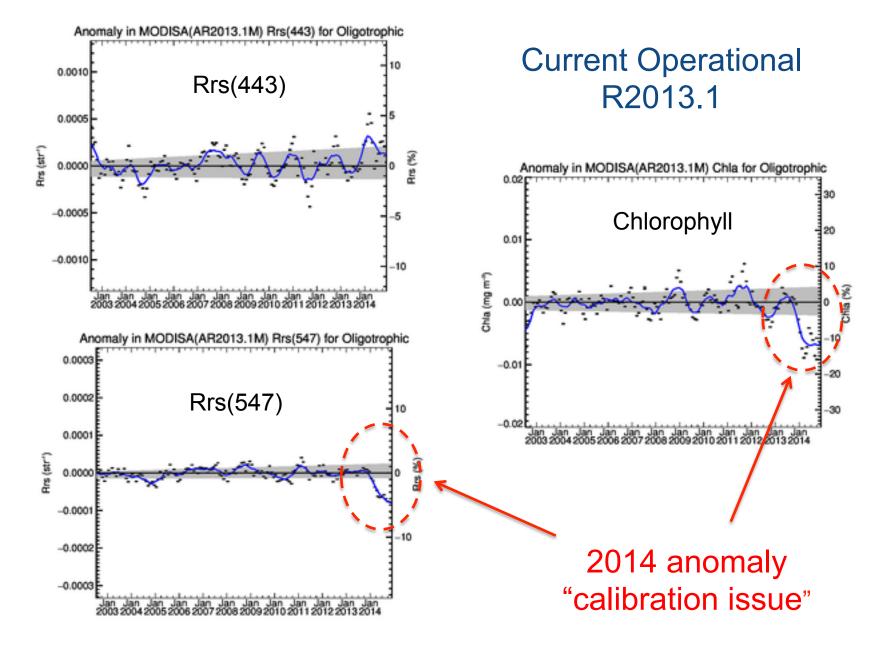
proposed IOP product suite

- a(λ)
- bb(λ)
- adg(443)
- Sdg
- bbp(443)
- Sbp
- uncertainties

total absorption at all visible wavelengths total backscatter at all visible wavelengths absorption due to phytoplankton at 443nm exponential spectral slope for adg particle backscattering at 443nm power-law spectral slope for bbp uncertainties in adg, aph, bbp at 443nm


VIIRS $\lambda = 410, 443, 486, 551, 671$ MODIS $\lambda = 412, 443, 469, 488, 531, 547, 555, 645, 667, 678$

General Status of MODIS & VIIRS Ocean Color


MODISA

- last full mission OC reprocessing in 2012 (current version 2013.1)
- there are issues with the calibration stability in the VIS-NIR, especially after Jan 2014 (will be "improved" in 2014.0 reprocessing)

MODISA $Rrs(\lambda)$ Deep-Water Time-Series

MODISA Clear-Water Rrs Anomaly Trends

General Status of MODIS & VIIRS Ocean Color

MODISA

- last full mission OC reprocessing in 2012 (current version 2013.1)
- there are issues with the calibration stability in the VIS-NIR, especially after Jan 2014 (will be "improved" in 2014.0 reprocessing)

MODIST

- last full mission OC reprocessing in 2011 (current version 2010.0)
- calibration of MODIST requires stable MODISA/SeaWiFS for cross-cal
- effort pending finalization of MODISA and SeaWiFS reprocessing

VIIRS

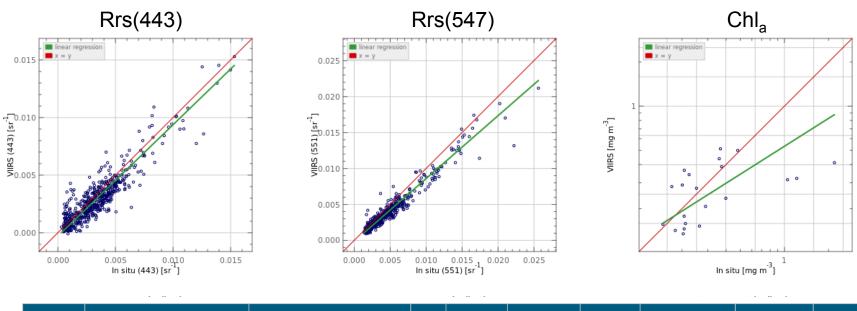
- 2014.0 OC reprocessing completed (previous version 2013.1)
- calibration stability and data quality looks very good, following extensive calibration efforts
- redesign of VIIRS Level-1A/B and geolocation process and format in progress, with anticipated regeneration of all VIIRS granules late 2015

General Status of MODIS & VIIRS SST

MODISA & MODIST

- full mission SST reprocessing recently completed (not yet released)
- incorporates latest algorithm coefficient updates and quality flag updates from algorithm PI, and Collection 6 calibration

VIIRS


- SST processing capability using MODIS heritage algorithms implemented, but pending final refinement of algorithm coefficients
- algorithm refinement is pending operational launch of Level-1A redesign, which is needed to support efficient regional extraction and specialized processing for in situ buoy match-ups

Instruments and Calibration

SeaWiFS	Fred Patt
MODIS	Gerhard Meister
VIIRS	Gene Eplee

Product Quality

VIIRS R2014.0 In Situ Validation

Product Name	VIIRS Range	In situ Range	#	Best Fit Slope	Best Fit Intercept	R ²	Median Ratio	Abs % Difference	RMSE
Rrs410	-0.00170, 0.01185	0.00001, 0.01273	549	0.95555	-0.00049	0.71726	0.75882	33.72388	0.00139
Rrs443	-0.00009, 0.01529	0.00031, 0.01533	551	0.96766	-0.00030	0.84769	0.85058	24.30475	0.00103
Rrs486	0.00061, 0.01924	0.00101, 0.02276	551	0.86426	-0.00018	0.93398	0.80337	21.36508	0.00120
Rrs551	0.00092, 0.02118	0.00137, 0.02562	551	0.87412	-0.00015	0.94758	0.83103	17.50243	0.00112
Rrs671	-0.00023, 0.00919	0.00001, 0.00872	549	0.95335	-0.00020	0.85823	0.72070	31.53838	0.00049
Product Name	VIIRS Range	In situ Range	#	Best Fit Slope*	Best Fit Intercept*	R ² *	Median Ratio	Abs % Difference	RMSE*

21 0.63292

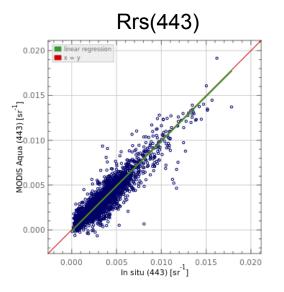
-0.27375

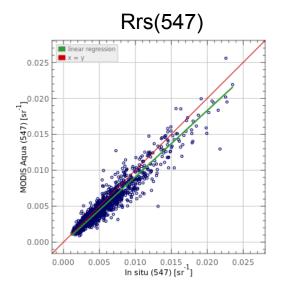
0.51249

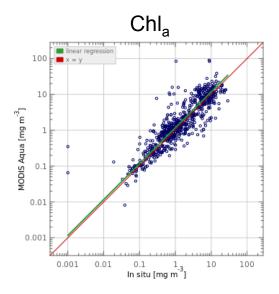
0.85871

33.97323

0.27166

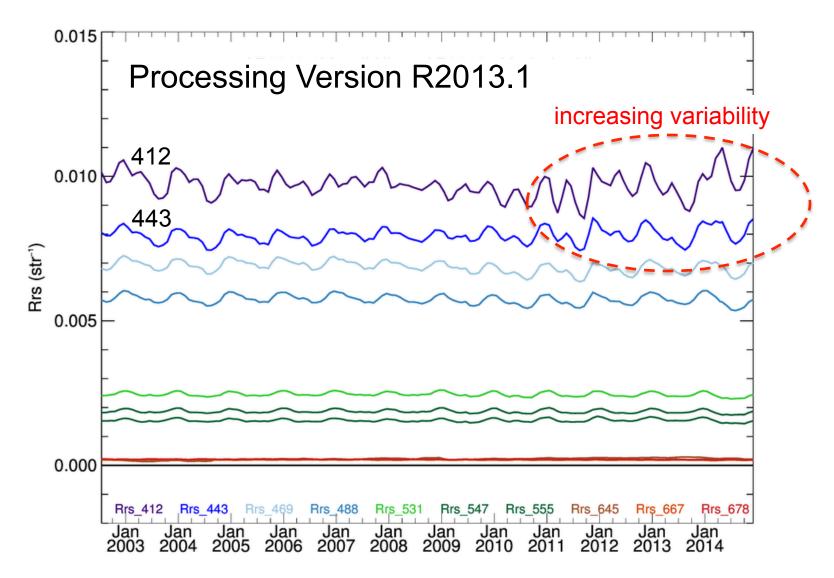

* statistical calculations based on log10


0.14823, 2.19377

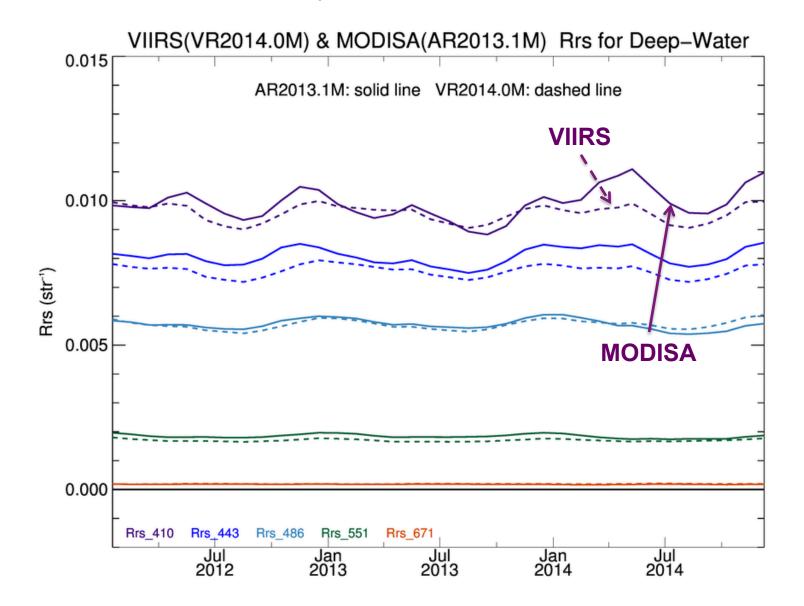

0.13469, 0.51238

chlor_a

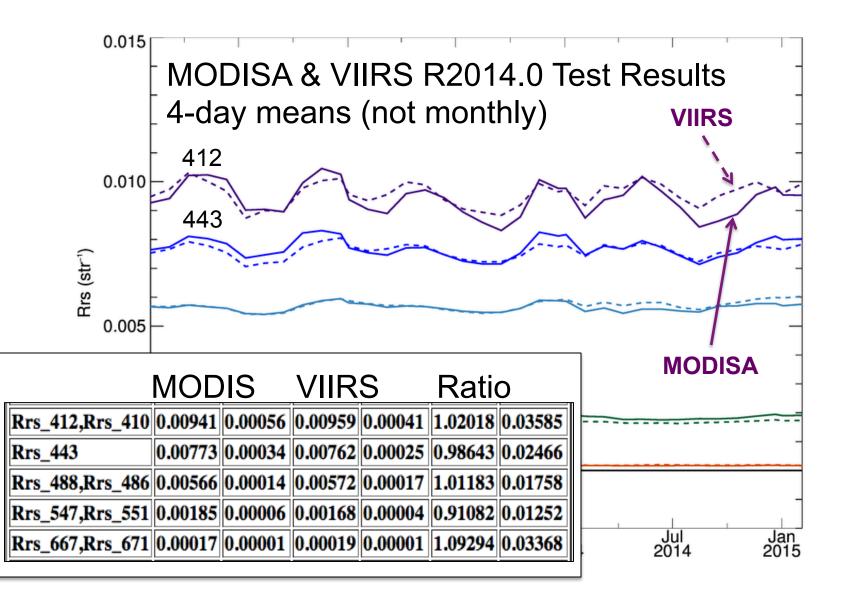
MODISA R2013.1 In Situ Validation



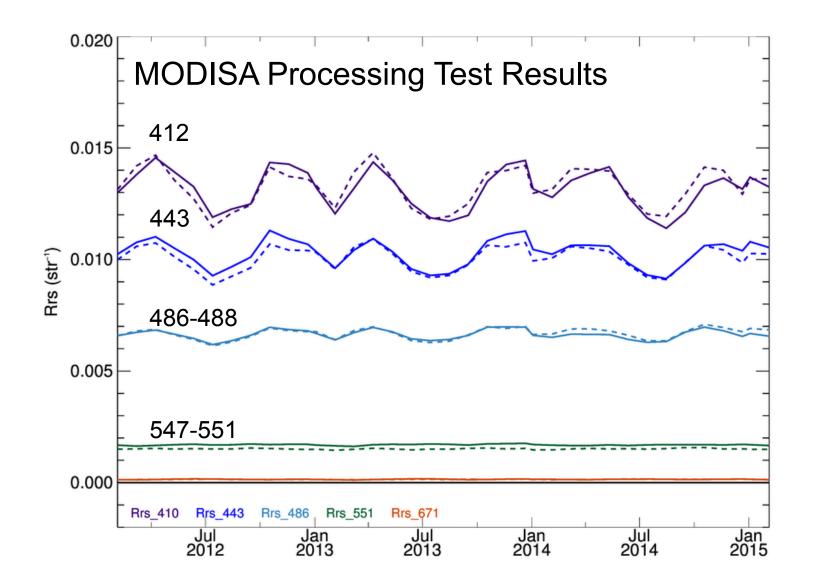
2	Product Name	MODIS Aqua Range	In situ Range	#	Best Fit Slope	Best Fit Intercept	R ²	Median Ratio	Abs % Difference	RMSE
	Rrs412	-0.00261, 0.01820	0.00002, 0.01964	1954	0.99291	-0.00059	0.77055	0.82390	30.41368	0.00151
1	Rrs443	-0.00065, 0.01916	0.00007, 0.01783	2124	1.00106	-0.00011	0.85345	0.98369	16.73993	0.00105
	Rrs488	0.00033, 0.02030	0.00039, 0.02289	1829	0.90079	-0.00012	0.91138	0.87838	14.98993	0.00112
1	Rrs531	0.00092, 0.02045	0.00133, 0.02285	724	0.91916	-0.00022	0.92451	0.87761	13.88098	0.00119
	Rrs547	0.00089, 0.02559	0.00117, 0.02353	1702	0.92216	-0.00013	0.92495	0.89320	12.55173	0.00111
	Rrs667	-0.00034, 0.01186	0.00001, 0.01100	1620	1.02181	-0.00019	0.87108	0.80298	28.30381	0.00041
	Rrs678	-0.00034, 0.01009	0.00010, 0.00904	385	1.17917	-0.00034	0.86345	0.77994	31.52185	0.00045

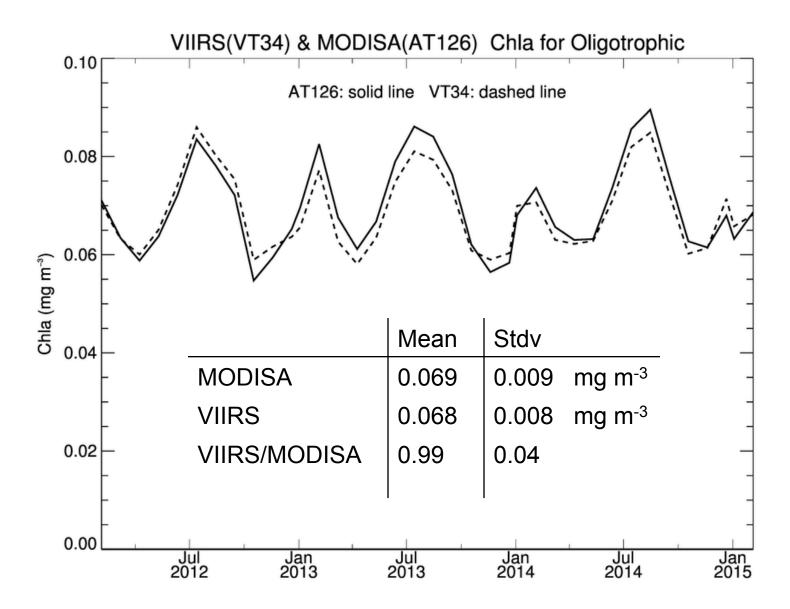

Product Name	MODIS Aqua Range	In situ Range	#	Best Fit Slope*	Best Fit Intercept*	R ² *	Median Ratio	Abs % Difference	RMSE*
chlor_a	0.00818, 90.17510	0.00100, 29.00400	695	1.00199	0.06869	0.81326	1.13231	38.19472	0.32752

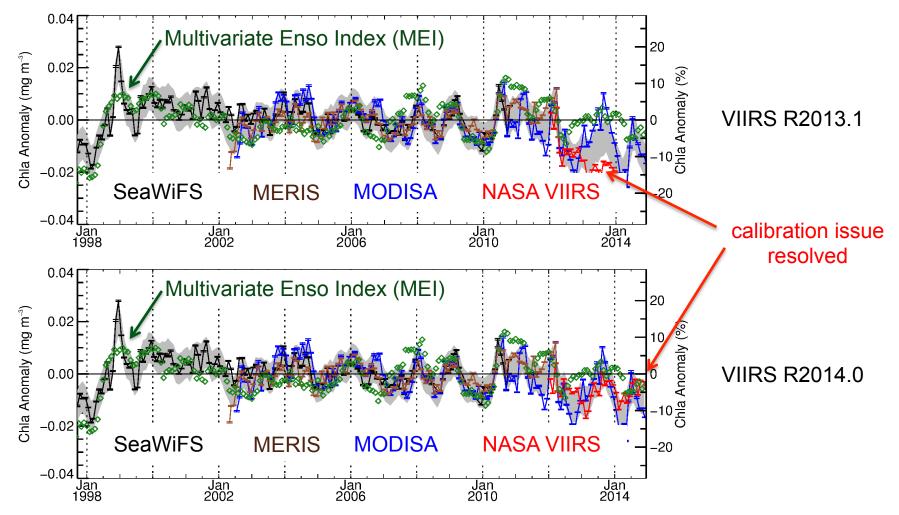
* statistical calculations based on log10


$\begin{array}{l} \text{MODISA } Rrs(\lambda) \text{ Deep-Water Time-Series} \\ \text{monthly mean deep-water } Rrs \end{array} \end{array}$


VIIRS R2014.0 & MODISA R2013.1 monthly mean deep-water Rrs


MODISA showing agreement with R2014.0 VIIRS Rrs(λ) Deep-Water Time-Series


MODISA showing agreement with R2014.0 VIIRS Chlorophyll (OCI) Deep-Water Time-Series


MODISA & VIIRS Rrs(λ) Clear-Water Time-Series showing "good" agreement

MODISA showing agreement with R2014.0 VIIRS Chlorophyll (OCI) Deep-Water Time-Series

Global Mid-Latitude (+/- 40°) Chlorophyll Anomaly showing improved agreement of VIIRS with MODISA, MEI, and historical norms after R2014.0 reprocessing

Following Franz, B.A., D.A. Siegel, M.J. Behrenfeld, P.J. Werdell (2015). Global ocean phytoplankton [in State of the Climate in 2014]. Bulletin of the American Meteorological Society, submitted. 38

Possible Discussion Topics

- questions about anything presented?
- is VIIRS better than MODIS?
- VIIRS Level-1A/B/GEO redesign
- SeaDAS status
- SeaBASS status
- MERIS/GOCI/OLCI/SGLI/OLI status