Predicted vs observed results for different channel combinations, information content and operational error for multi-sensors SST retrievals

Prabhat K. Koner & Andy R. Harris

Basic of Physical Inverse Model

- Forward model: Y = KX; dY = KdX
- Inverse: $d\mathbf{X} = \mathbf{K}^{-1}d\mathbf{Y}$ (measurement error)
- Lengendre (1805) developed Least Squares stochastically, but the deterministic form $\mathbf{X} = \mathbf{X}_{ig} + (\mathbf{K}^{T}\mathbf{K})^{-1}\mathbf{K}^{T}d\mathbf{Y}_{\delta}; \quad dY_{\delta} = \mathbf{Y}_{\delta} - \mathbf{Y}_{ig}$

Last 30~40 years: $\delta X \leq \kappa \, \delta E; \kappa = \text{cond}(\mathbf{K})$

• Two ways can be addressed:

 $dY_{\delta} - \delta Y = \mathbf{K} dX \quad then, \quad LS$ $\frac{\min}{\|\delta K\|, \|\delta Y\|, X} \{ \|\delta K\|^{2} + \|\delta Y\|^{2} \} \quad \text{subject to } (K - \delta K) \, dX = dY_{\delta} - \delta Y$

MODIS Science Team Meeting

Deterministic & Stochastic

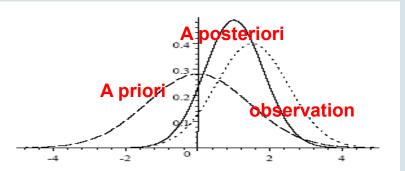
Determinitic

Stochastic/Probabilistic

$$\mathbf{X}_{rg} = \mathbf{X}_{ig} + (\mathbf{K}^{\mathrm{T}}\mathbf{K} + \lambda \mathbf{I})^{-1}\mathbf{K}^{\mathrm{T}}d\mathbf{Y}_{\delta}$$

$$= X_{ig} + K_{ps}^{inv} dY_{\delta}$$

$$\mathsf{TLS:} [\mathbf{u} \,\sigma \,\mathbf{v}] = [\mathbf{K} \quad d\mathbf{Y}_{\delta}]$$


$$\mathsf{MTLS:}$$

$$\lambda = (2\log(\kappa) / \left\| d\mathbf{Y}_{\delta} \right\|^{2}) \sigma_{end}^{2}$$

$$\mathsf{Total Error:} \| \mathbf{X}_{true} - \mathbf{X}_{mtls} \|$$

$$\| (\mathbf{K}_{ps}^{inv} \,\mathbf{K} - \mathbf{I}) \mathbf{X}_{true} \| + \| \mathbf{K}_{ps}^{inv} (d\mathbf{Y}_{\delta} - \mathbf{K}\mathbf{X}_{mtls}) \|$$

Model Resolution Matrix: $\mathbf{M}_{rm} = \{ (\mathbf{K}^{T}\mathbf{K} + \lambda \mathbf{R})^{-1}\mathbf{K}^{T} \} \mathbf{K}$ Degree freedom in Retrieval: $DFR_{nor} = trace(\mathbf{M}_{rm}) / \min(m, n)$ $\mathbf{X}_{rtv} = \mathbf{X}_{ig} + (\mathbf{K}^{\mathrm{T}} \delta \mathbf{Y}^{-2} \mathbf{K} + d\mathbf{X}^{-2})^{-1} \mathbf{K}^{\mathrm{T}} \delta \mathbf{Y}^{-2} d\mathbf{Y}_{\delta}$

OEM: A set of measurement $\mathbf{X}_{oem} = \mathbf{X}_{ap} + (\mathbf{K}^{\mathrm{T}} \mathbf{S}_{e}^{-1} \mathbf{K} + \mathbf{S}_{a}^{-1})^{-1} \mathbf{K}^{\mathrm{T}} \mathbf{S}_{e}^{-1} d\mathbf{Y}_{\delta}$ Chi-Square test: $\chi_{resd} = \mathbf{K} \mathbf{X}_{oem} - d\mathbf{Y}_{\delta}$ $\chi = \chi_{resd}^{T} (\mathbf{S}_{e} (\mathbf{K}^{\mathrm{T}} \mathbf{S}_{a} \mathbf{K} + \mathbf{S}_{e})^{-1} \mathbf{S}_{e})^{-1} \chi_{resd}$ Averaging Kernel: $\mathbf{A} = \{ (\mathbf{K}^{\mathrm{T}} \mathbf{S}_{e}^{-1} \mathbf{K} + \mathbf{S}_{a}^{-1})^{-1} \mathbf{K}^{\mathrm{T}} \mathbf{S}_{e}^{-1} \} \mathbf{K}$ $DFS_{nor} = trace(\mathbf{A}) / \min(m, n)$

MODIS Science Team Meeting

Characteristics of Inverse Methods

Elements	Deterministic	Stochastic
Measurement/s	True value + error	Expected value + uncertainty
Physical model	Necessary	Not always (e.g. regression)
Parameters	True value	Random variables
Inversion	Single pixel	A set of measurements
Validation(for a set of measurements)	RMSE= Systematic + Random	Bias (stability) + SD (uncertainty)
Names	Tikhonov, L-M, G-N, LS, TLS, RTLS, TSVD etc.	OE, M-L, Id-var, Regression
EOS/Satellite inversion	A little known	Widely used

MODIS Science Team Meeting

Information Content

Based on Shannon & Weaver (1949) information content study based on stochastic assumptions:

 Rodgers stated (p. 34-37, 2000): information of measurement is the changing of entropy of the state space before and after measurement and it is given for remote sensing radiative transfer inverse problem as:

$$\mathbf{H} = \mathbf{S}(\mathbf{p}_1) \cdot \mathbf{S}(\mathbf{p}_2)$$

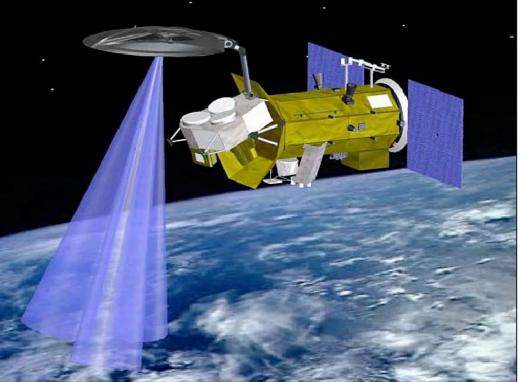
• After simplification final form for information:

$$H = -\frac{1}{2} \ln |I - A|$$
 For LS, A=I, H=0!

Data and Forward model specifications

- Forward model using ver. CRTM2. I
- Monthly matchups pixel collocated data
- Buoy (coastal, Moore & drifters)
- □ Sensors: GOES13, MTSAT2, MODIS-A, VIIRS
- iQUAM quality control data
- Using GFS ancillary data (NRT operational)
- Night time scenarios
- CMIP5 climatology standard aerosol
- □ OEM error covariance: difficult in operation
- Cloud detection is major issue
- Bias for Skin-bulk, forward model and measurement

MODIS Science Team Meeting


OEM error covariances

VIIRS (3.7 4.0 11 12): Ambiguities 0.12 0.04 0.03 0.03 (Boryana Efremova et al JGR 2014) 0.065 0.078 0.038 0.070 (JPSS ATBD 474 474-00048) MTSAT2: http://www.wmo-sat.info/oscar/instruments MODIS-A: Xiaoxiong Xiong IEEE TGRS, 47, 2009 GOES13: NOAA Technical Report NESDIS 131 Fast forward model (CRTM2.1) error. It is very difficult to estimate correct forward model error. We assumed: ~0.2K near 4 μ m channels (due to many absorbers in this region, which is considered in CRTM2.1) and ~ 0.1 K for other channels.

MODIS Science Team Meeting

Clear Sky Assumptions

Experimental Filter

$$rtv_{3.9} = (T_{3.9} - BT_{3.9}) / K_{3.9}$$
$$abs(SSTb - rtv3.9) < 1$$

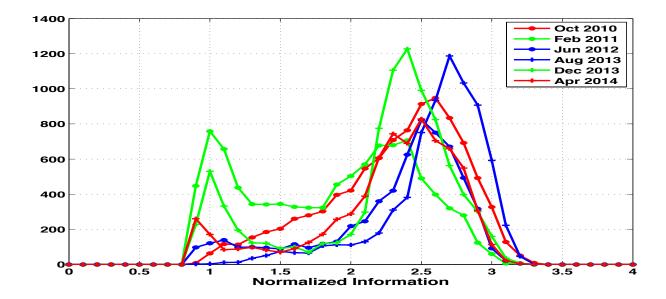
MODIS Science Team Meeting

Systematic Errors for various model

- I. Forward model biases (SRF, approximation RT equations, Parameterizations, profiles etc.
- 2. Instrument biases (calibration, recalibration, drifting etc.)
- 3. References biases (systematic skin-bulk error)

Experimental set up: Bias correction (BC_{ls}) is made based on the mean difference between the LS solution and SST_b. MTLS or TLS based algorithm minimizes the cost function using orthogonal LS, as compared to ordinary LS equally weights all measurement..Thus MTLS bias correction is made:

$$BC_{mtls} = \frac{\sum_{i=1}^{m} \omega_i}{m \times \max(\omega_i)} BC_{ls}; \quad \omega = K_{s.}$$


Bias is an error. It generates from Models errors and should be objectively corrected at source.

MODIS Science Team Meeting

Normalized Information for SST retrieval from GOES13 using OEM

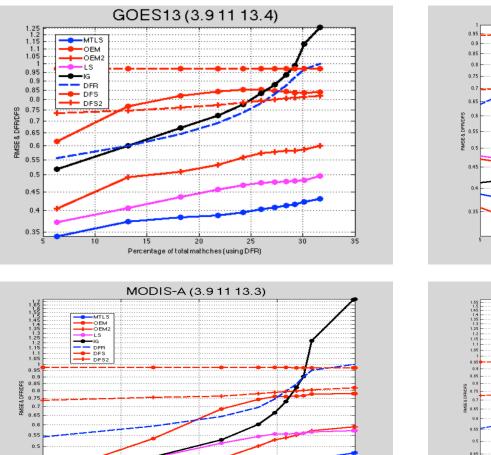
• NI=H/min(m,n)

One measurement cannot produce more than one piece of information.

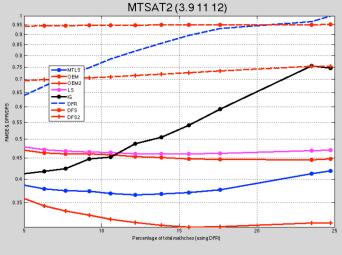
MODIS Science Team Meeting

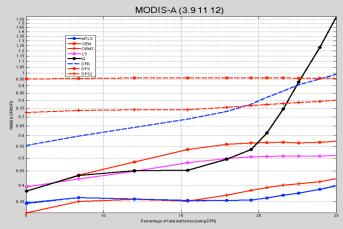
Degree of Freedom

 $DFR_{nor} = trace(\mathbf{M}_{rm}) / \min(m, n)$ $DFS_{nor} = trace(\mathbf{A}) / \min(m, n)$ $\mathbf{A} = \{ (\mathbf{K}^{T} \mathbf{S}_{e}^{-1} \mathbf{K} + \mathbf{S}_{a}^{-1})^{-1} \mathbf{K}^{T} \mathbf{S}_{e}^{-1} \} \mathbf{K}; \quad \mathbf{M}_{rm} = \{ (\mathbf{K}^{T} \mathbf{K} + \lambda \mathbf{R})^{-1} \mathbf{K}^{T} \} \mathbf{K} \}$


□ Normalized DFS/DFR of LS is one.

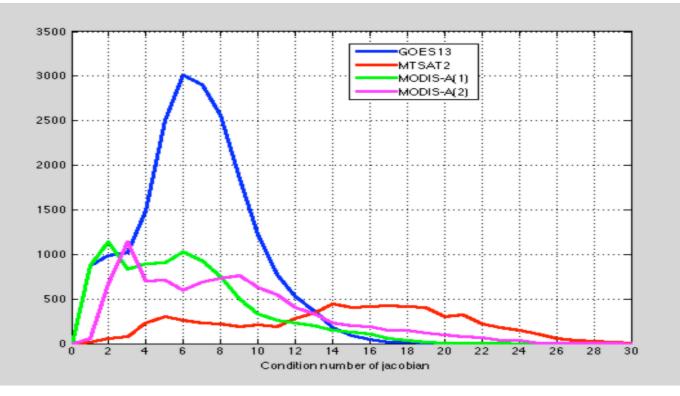
Thus we add LS in comparison study of MTLS & OEM as a reference.




MODIS Science Team Meeting

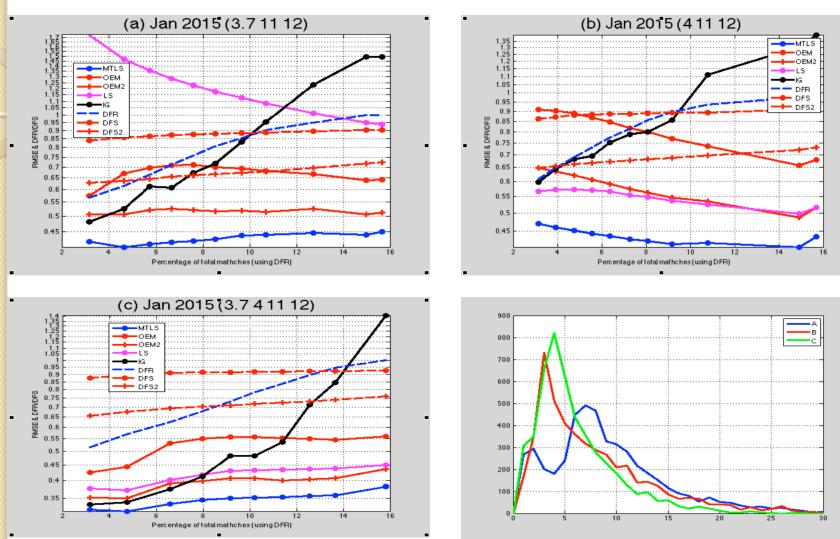
DFS/DFR and Retrieval error using three sensors for the month of June 2014

Percentage of total mathches (using DFR)



MODIS Science Team Meeting

Distribution of Condition number

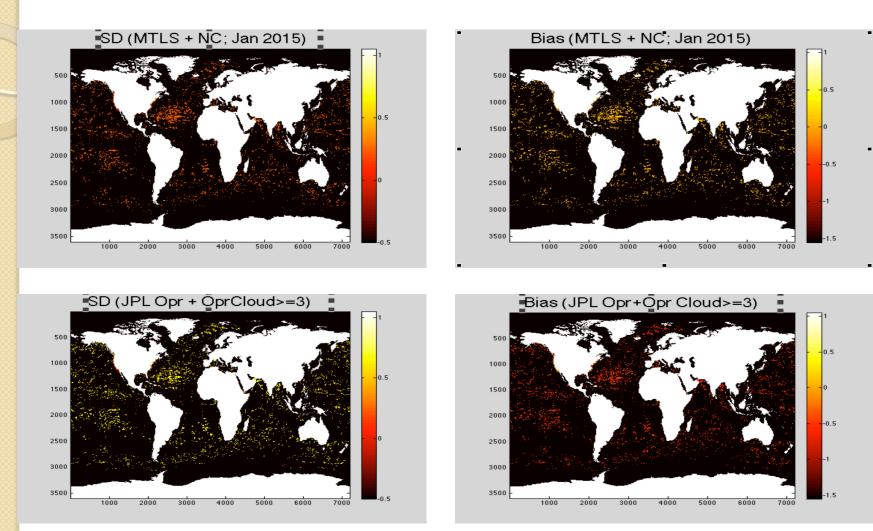


Condition number of jacobian containing 13.4 μ m hannel is lesser than the same of 12 μ m channel.

MODIS Science Team Meeting


DFR/DFS of VIIRS for various channels combinations

MODIS Science Team Meeting


Results of MODIS-A for multichannels

MODIS Science Team Meeting

Validation Map for MODIS-A SST

MODIS Science Team Meeting

Summary and conclusions

- Developmental history of inverse algorithms and sensitivity study.
- In our study, MTLS shows the best performance
- This study also shows that for majority of cases, OEM solutions contain higher error than that of a priori.
- Additionally, whether OEM outperforms LS or vice versa depends on the condition number of the problem in hand. (discussed theoretically at the beginning, and shown practically)
- Sensitivity study shows that: a low DFR/DFS does not necessarily mean a more accurate product. In other words, DFR alone is inadequate to characterize the true sensitivity.
- The success of MTLS is attributed to its data-driven regularization, i.e., when IG error is high, regularization is low and vice versa.

THANKS!