MODIS Clear-sky Infrared Total Precipitable Water Vapor Product and its continuity with VIIRS and CrIS

E. Eva Borbas, Zhenglong Li and W. Paul Menzel

Cooperative Institute for Meteorological Satellite Studies Space Science and Engineering Center University of Wisconsin-Madison

Outline

- The TPW retrieval algorithm
- MODIS vs VIIRS TPW Products
- Terra/MODIS calibration issue
- Aqua/MODIS data record / trends
- HIRS TPW data record
- Conclusion
- Future Plans

Algorithm Discussion

Clear radiance exiting the atmosphere for a MODIS IR band with wavelength λ : p_{sfc}

$$I_{\lambda} = \epsilon_{\lambda}^{sfc} B_{\lambda}(T_{sfc}) \tau_{\lambda}(p_{sfc}) - \int B_{\lambda}(T(p)) \left[d\tau_{\lambda}(p) / dp \right] dp .$$

0

 I_{λ} is measured by MODIS for $\lambda = 4.4 - 14.2 \mu m (I_{25}, I_{27}, \dots I_{36})$

 I_{λ} can be considered a nonlinear function of the atmospheric properties including T, q, ozone, surface pressure, skin temperature, and emissivity.

We can infer a statistical regression relationship using calculated radiances from a global set of radiosonde profiles and surface data.

Relationship is inverted to retrieve atmospheric properties from observed MODIS radiances.

Algorithm Discussion

- Global Training Dataset (SeeBor V5.0): data set drawn from NOAA-88, TIGR-3, ozonesondes, ECMWF analyses, desert radiosondes containing 15000+ global radiosonde profiles of temperature, moisture, and ozone used for training data set. The surface characteristics is assigned by using the UW Baseline Fit Global Land Surface Emissivity Database <u>http://www.cimss.ssec.wisc.edu/iremis/</u>).
- RT model: Radiance calculations for each training profile are made using a 101 pressure layer transmittance model (CRTM). Instrument noise is added to calculated spectral band radiances.
- In the regression retrieval algorithm, viewing angle, land/ocean and Brightness Temperature classifications were applied to build a better relationship for different atmospheric situations.
- Uncertainty: MOD07 TPW within 2 (4) mm rms for dry (wet) retrievals wrt Microwave Water Vapor Radiometer (at SGP Cart site)

Spectral Response Functions of Aqua/MODIS TIR bands used by the TPW algorithm

Cooperative Institute for Meteorological Satellite Studies SS University of Wisconsin - Madison

Spectral Response Functions of Aqua/MODIS TIR and VIIRS bands used by the TPW algorithm

Cooperative Institute for Meteorological Satellite Studies University of Wisconsin - Madison

Comparison of the MODIS and the VIIRS TPW Products

Characteristics	MODIS (MODo7)	VIIRS (+CrIS)
Spectral Bands	IR only using CO2, H2O and IRW bands; between 4.5 and 14.5 µm (11 bands)	Band M14, M15, M16 TPW derived from CrIS/ATMS
Spatial Resolution	5km : 5x5 1km average	5km: 7x7 750m average
Spatial Coverage	Global (clear sky)	Global (clear sky)
Cloud Mask	MOD35 Cloud Mask	MVCM (750m)
Ancillary Data	GDAS (1ºx1º res)	CFSR(0.5 [°] x0.5 [°] res)
Time periods	Morning (SZA <= 85° and Local Time Before Noon) Afternoon (SZA <= 85° and Local Time After Noon) Evening (SZA > 85° and Local Time Before Midnight) Night (SZA > 85° and Local Time After Midnight)	
Outputs	Total Precipitable Water (TPW) Hi and Low Integrated WV Skin Temperature Temperature, Mixing Ratio Profile Total Ozone Stability indices (LI, K, TT)	TPW Skin Temperature
Time Coverage	2000-	2012-
Cooperative Institute for Meteorological Satellite Studies University of Wisconsin - Madison		

Cooperative Institute for Meteorological Satellite Studies University of Wisconsin - Madison

CIMSS

TPW fields for a selected Granule at 8:40 UTC, Oct 15, 2014

VIIRS Single Pixe

/IIRS 7x7 + new BT classification

TPW fields for a selected Granule at 8:40 UTC, Oct 15, 2014

VIIRS Single Pixe

WYD07

/IIRS 7x7 + new BT classification

TPW fields for a selected Granule at 8:40 UTC, Oct 15, 2014

VIIRS Single Pixe

WYD07

/IIRS 7x7 + new BT classification

Cooperative Institute for Meteorological Satellite Studies University of Wisconsin - Madison

Normalized histogram of MYD07 vs VIIRS (5km) and NUCAPS TPW on Oct 14, 2014 over Water

Cooperative Institute for Meteorological Satellite Studies CIMSS University of Wisconsin - Madison

Normalized histogram of MYD07 vs VIIRS (5km) and NUCAPS TPW on Oct 14, 2014 over Land

CIMSS

Cooperative Institute for Meteorological Satellite Studies University of Wisconsin - Madison Time series of the Aqua MOD07 high, middle and low layer monthly mean integrated water vapor (IWV) for the mid-latitude North (30N to 60N), mid-latitude South ((30S-60S) and tropical latitude (30S to 30N) bands at nighttime

Time series of the Terra MYD07 high, middle and low layer monthly mean integrated water vapor (IWV) for the mid-latitude North (30N to 60N), mid-latitude South ((30S-60S) and tropical latitude (30S to 30N) bands at nighttime

Cooperative Institute for Meteorological Satellite Studies University of Wisconsin - Madison

CIMSS

NVAP and MYD07 TPW trends

CIMS

MYD07 TPW 12y anomaly

2009-2010 Moderate El Nino

2010-2011 Strong La Nina

GOAL: Processing HIRS, MODIS, and VIIRS+ with the same algorithm will create a TPW record that can reveal trends over more than 4 decades

Conclusions (MODIS and HIRS trends)

- Seasonal MODIS, HIRS and NVAP TPW cycle is strongest in northern midlats and weakest in tropics
- Aqua MODIS and NVAP (& HIRS –see on poster) water vapor trends are in good agreement; Terra MODIS water vapor is out of family due to Ch 27 cross-talk calibration drift
- TPW does not show significant diurnal changes
- TPW decrease in 2008 and 2012 is evident in Aqua MODIS, N15 & N17 HIRS and NVAP-Climate data record. Those agree with the La-Nina events at the Tropic.
- Increase in tropical TPW in 2015 is suggested

Conclusions (VIIRS TPW)

- VIIRS split window enables 750 m resolution TPW maps with moderate ability to depict moisture gradients – very wet and very dry conditions are not captured very well
- VIIRS TPW over land requires careful attention to the surface emissivity, sea/land and BT classifications, and clear determination

 NUCAPS show moisture gradients at 50 km resolution even in the presence of non-precipitating clouds

 VIIRS + NUCAPS shows promise for continuing the moisture records established by HIRS and MODIS

Plans for VIIRS + NUCAPS TPW Products

- Check sea-land and BT training data distributions
- Increase the viewing angle categories
- Supplement VIIRS split window with NUCAPS to better capture very dry and wet conditions

Plans for MODIS TPW Products

Characterize Terra B27 crosstalk and reprocess if possible

Plans for HIRS TPW Products

 Recalibrate split window bands against IASI and reprocess complete record

MODIS spectral shifts applied

H2O

H2O

O3

CO2

CO2

CO2

Terra

- Band 27: +4.0 cm-1
- Band 28: +2.0 cm-1
- Band 30: +1.0 cm-1
- Band 34: +0.8 cm-1
- Band 35: +0.8 cm-1
- Band 36: +1.0 cm-1

Aqua

- Band 27: +5.0 cm-1
- Band 28: +2.0 cm-1
 - Band 30: +0.0 cm-1
 - Band 34: +0.8 cm-1
 - Band 35: +0.8 cm-1
 - Band 36: +1.0 cm-1

Based on AIRS/IASI-MODIS Brightness Temperature differences over a selected year 2009. (Tobin et al, 2006, Quinn et al, 2010)

