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Motivation

* Previous generation SST algorithms are regression-
based
— E.g. MCSST, NLSST (Pathfinder)
— Usually employed direct regression of radiances against in situ SSTs
— Ameliorates issues with instrument calibration/characterization

« Some success for RT-based regression
— Primary example (A)ATSR series
— Well-calibrated and characterized radiometer
— Dual-view permitted robust retrieval, but fairly narrow swath

 Regression-based algorithms could result in regional/
seasonal biases

— Attempt to characterize global retrieval conditions with only a few
coefficients

— Causes bias if local atmospheric conditions are different from the

ensemble mean for the training data
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Simulated Pathfinder Retrieval Errors
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Modeled Pathfinder Bias
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What happens when we include volcanic aerosol?
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Simulated Pathfinder Retrieval Errors
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Latitude / degrees

Include Pinatubo in
RTM radiances

Modeled Pathfinder Retrieval Bias
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e Negative bias is reduced, but posSiStTi\?iés Kiases are propagated N & S

o Split-window based algorithm has no skill in compensating for aerosol
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Pathfinder Retrieval Bias
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e Common features w.r.t. biases induced by Pinatubo aerosol

e Actual seasonal variability is greater than predicted by modeling
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Reduces the problem to a local linearization

— Dependent on ancillary data (NWP) for an initial guess

— More compute-intensive than regression — not an issue nowadays
» Especially with fast RTM (e.g. CRTM)

Widely used for satellite sounding

— More channels, generally fewer (larger) footprints

Start with a simple reduced state vector

— x=[SST, TCWV]T

— N.B. Implicitly assumes NWP profile shape is more or less correct
Selection of an appropriate inverse method

— Ensure that satellite measurements are contributing to signal

— Avoid excessive error propagation from measurement space to
parameter space

> If problem is ill-conditioned

NASA MODIS-VIIRS ST Meeting, May 18 — 22, 2015



History of Inverse Model

Forward model: Y =KX
Simple Inverse: X = K'Y (measurement error)

Legendre (1805) Least Squares:
X=X, +K'K)'K'(Y;-Y,)

MTLS: X=X +(K"'K+AR)'K"(Y,-Y,)

oeM: X=X +(K'S/K+S)'K'S! (Y,-Y,)
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Uncertainty Estimation

Physical retrieval
Normal LSQ Eqn: Ax = (KTK)'KTAy [= GAy]
MTLS modifies gain: G’ = (KTK + A)1KT
Regularization strength: A = (2 log(x)/||Ay|)62,.q
(o0%..4 = lowest singular value of [K Ay])
Total Error

lell = [I(MRM — DAx]| + |G| I(Ay - KAX)||)

N.B. Includes TCWV as well as SST
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DFS/DFR and Retrieval error
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o2 is an overestimate...

...or an underestimate

« Perform experiment — insert “true” SST error into S_-
— Can only be done when truth is known, e.g. with matchup data

12
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DFS/DFR and Retrieval error
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Use a combination of spectral differences and RT
— Envelope of physically reasonable clear-sky conditions

Spatial coherence (3%3)
Also check consistency of single-channel retrievals
Flag excessive TCWV adjustment & large MTLS error

Npix=7698
10

I I
-4 -2

SSSSSSSSSSS

reduced leakage
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VIIRS Initial Results
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- Data are ordered according to MTLS error
— Reliable guide for regression as well as MTLS
— Trend of initial guess error is expected
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SD & RMSE
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— lrrespective, MTLS is quite tolerant of cloud scheme

* Recalculated SST4 coefficients produce quite good
results
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* It seems “obvious” that a sensitivity of 1 is desirable
— E.q. if there is diurnal warming of 5 K, it will be observed in the data,
and strong upwellings will be accurately observed, efc.
« However, there is a penalty to be paid

— lll-conditioned problem =» noise propagates from measurement space
to parameter space

— Compromise is usually struck (e.g. minimum least squares result for
training data in a regression algorithm)
 Regression algorithms may have sensitivity <1 for large
regions
— E.g. daytime algorithms in the tropics (diurnal warming!)

— Causes bias if local atmospheric conditions are different from the
ensemble mean for the training data

NASA MODIS-VIIRS ST Meeting, May 18 — 22, 2015 17



Physical retrieval methods locally linearizes the retrieval
— Ameliorate regional bias issues

Physical retrievals still ill-conditioned
— Least-Squares generally considered to have unacceptable noise

Optimal Estimation can have sensitivity ~1
— Requires somewhat inflated SST error covariance
— Leads to relatively poor noise performance
— Using “true” SST error greatly improves retrieval accuracy
— However, SST sensitivity is substantially reduced

MTLS algorithm adjusts its sensitivity

— Sensitivity <1 when initial guess is close to truth
— Sensitivity = 1 when initial guess is far from truth
— Retrieval accuracy approaches “optimized” OEM
— May still be an issue for fine structure

NASA MODIS-VIIRS ST Meeting, May 18 — 22, 2015 18



Summary

MTLS seems applicable to VIIRS

— Well-calibrated instrument, with reliable fast RTM available
— Error calculation useful quality indicator

MODIS offers even more possibilities

— “Sounding” channels permit inclusion of basic profile shape
information in the state vector

— See Prabhat’s presentation at the Oceans Breakout

Cloud detection can be aided by RTM

— “Single-channel” retrieval consistency, MTLS error calculation

Options for improvement
— Close to validation limit for conventional in situ
— Take advantage of differing length scales to reduce atmospheric noise
— Perhaps combine with sounder for more local atmospheric information
— Refine fast RTM, iteration

— Tropospheric aerosols...
NASA MODIS-VIIRS ST Meeting, May 18 — 22, 2015
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MTLS/RTLS/Tikhonov: Single pixel

dX =K'dy w
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Main concerns: Correlation &
Causation



Satellite-Buoy (K)
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How sensitive is retrieved SST NA:T_[,‘

to true SST?

e [f SST changes by 1 K, does retrieved SST change by 1 K?

e CRTM provides tangent-linear derivatives My 9SST e

true

0SST,

true

Response of NLSST algorithm to a change in true SST is...

BNLSS/SS (al +a, x 55T, +a, x{sec 1}) ol

true

YA

true

_ (a2 x SST,, + a; % {sec(ZA) = 1})x a1, oSS

true

Merchant, C.J., A.R. Harris, H. Roquet and P. Le Borgne, Retrieval characteristics of non-
linear sea surface temperature from the Advanced Very High Resolution Radiometer,
Geophys. Res. Lett., 36, L17604, 2009
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Sensitivity often <1 and changes with season
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of Bias

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
SST Bias / K

NASA MODIS-VIIRS ST Meeting, May 18 — 22, 2015



Ospo Cloud (June 2014 Day)

detections

Characteristics of different cloud

New Cloud (Day June 2014)
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 The data coverage of new cloud * There is no physical meaning from

(NC) 50% more than OSPO

« # cloud free pixels for high SZA is
sparse — maybe OSPO & OSI-SAF
regression form are not working for
this regime

RT for a regression variable of
SSTg multiplied with (T11-T12).
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