

# Land Surface Temperature and Emissivity (LST&E) products for MODIS and VIIRS Continuity

Glynn Hulley, Nabin Malakar, Tanvir Islam Simon Hook, Pierre Guillevic

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

(c) 2015 California Institute of Technology. Government sponsorship acknowledged.

MODAPS: Virginia Kalb, Sadashiva Devadiga, Teng-Kui Lim, Robert Wolfe, Kurt Hoffman, Jerry Shiles

MODIS/VIIRS Science Team Meeting, Silver Spring, MD, 19 – 22 May, 2015

# Outline

- 1. MOD21 LST&E Product
- 2. MOD21 LST&E Updates
- 3. New NASA VIIRS LST&E Product
- 4. MODIS-VIIRS Continuity

#### Current MODIS/VIIRS LST&E Products

| Core<br>Products        | Status                     | Spatial                 | Formats                   | Algorithm                                                         | SDS                                              |
|-------------------------|----------------------------|-------------------------|---------------------------|-------------------------------------------------------------------|--------------------------------------------------|
| MOD11<br>(C4, 5, 6*)    | Collection 6 in processing | 1-km                    | L2 Swath, L2G<br>2X Daily | Generalized Split<br>Window (GSW)<br><i>Wan et al. 1996, 2008</i> | - LST                                            |
| MOD11B1<br>(C4, 4.1, 5) | ?                          | 5-km (C4*)<br>6-km (C5) | Sinusoidal<br>2X Daily    | Day/Night Algorithm<br>Wan and Li, 1997                           | - LST<br>- Emissivity<br>bands 20-23, 29, 31, 32 |
| VIIRS VLST<br>(IDPS)    | Mx8*                       | 750 m                   | L2 Swath, L2G<br>2X Daily | Single Split-Window<br>Yu et al. 2005                             | - LST                                            |

#### New MODIS/VIIRS LST&E Products (JPL)

| New<br>Products         | Status                                                                   | Spatial | Formats                                  | Algorithm                                     | SDS                                       |
|-------------------------|--------------------------------------------------------------------------|---------|------------------------------------------|-----------------------------------------------|-------------------------------------------|
| MODIS-TES<br>(MOD21 C6) | Final testing,<br>released with<br>Collection 6 (Tier-2)                 | 1-km    | L2 Swath, L2G<br>2X Daily<br>L3G Monthly | Temperature<br>Emissivity Separation<br>(TES) | - LST<br>- Emissivity<br>bands 29, 31, 32 |
| VIIRS-TES               | Under<br>production at JPL<br>(Algorithm delivery<br>First quarter 2016) | 750 m   | L2 Swath, L2G<br>2X Daily<br>L3G Monthly | Temperature<br>Emissivity Separation<br>(TES) | - LST<br>- Emissivity<br>bands 14, 15, 16 |

# LST/Emissivity Error Dependency

- Overestimation of emissivity leads to underestimation of LST and vice versa.
- Split-window (11-12 micron) fixes emissivity based on land cover classification (IGBP)
- TES physically retrieves emissivity and temperature (minimum 3 bands)



### MOD21 LST

MOD21 Land Surface Temperature [K], 8-day mean, August 2004



Generated using prototype MOD21 algorithm at MODAPS

### MOD21 Band 29 Emissivity

MOD21 Band 29 (8.55 µm) Emissivity, 8-day mean, August 2004



Generated using prototype MOD21 algorithm at MODAPS

### MOD21 C6 LST&E Uncertainty estimates

ROSES 2009: Earth System Data Records Uncertainty Analysis



# Outline

- 1. MOD21 LST&E Product
- 2. MOD21 LST&E Updates
- 3. New NASA VIIRS LST&E Product

4. MODIS-VIIRS Continuity

# **MOD21** Updates and Refinements

| Parameter                              | MOD21 (JPL v2)                   | MOD21 (JPL v5) (C6)                                        |
|----------------------------------------|----------------------------------|------------------------------------------------------------|
| Radiative Transfer<br>Model            | MODTRAN<br>(MOD07 at 25 km)      | RTTOV<br>(MOD07 at 5 km)                                   |
| Water Vapor Scaling (WVS) coefficients | V2                               | V5 (day/night and view angle dependent)                    |
| TES algorithm                          | One calibration for all surfaces | Two calibrations for<br>Graybody and Bare<br>surface types |

### Problem Case: Very humid/warm conditions



Summertime monsoonal conditions

### MODTRAN Atmospheric Correction Degraded MOD07 C6 Resolution (25 km)



Temperatures overestimated in very humid conditions!

### RTTOV Atmospheric Correction Full MOD07 C6 Resolution (5 km)



Improved with RTTOV Implementation

### LST&E Validation Sites (Stage 1)



# Land Surface Temperature RMSE (K) 2003-2005



# Land Surface Temperature RMSE (K) 2003-2005



# Outline

- MOD21 LST&E Product
  MOD21 LST&E Updates
- 3. New NASA VIIRS LST&E Product

4. MODIS-VIIRS Continuity

### **NASA VIIRS/MODIS Products**

| LST&E Product Characteristics | MOD21 (C6)                                                     | <b>VIIRS-TES</b>                                                |               |
|-------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|---------------|
| Algorithm                     | Temperature<br>Emissivity<br>Separation (TES)                  | Temperature<br>Emissivity Separation<br>(TES)                   |               |
| Bands used                    | 29 (8.55 μm)<br>31 (11 μm)<br>32 (12 μm)                       | 14 (8.55 μm)<br>15 (10.76 μm)<br>16 (12 μm)                     |               |
| Radiative Transfer Model      | RTTOV                                                          | RTTOV                                                           |               |
| Atmospheric Profiles (T, RH)  | MOD07 C6                                                       | MERRA, <del>NUCAPS?</del><br><del>ECMWF?, NCEP?</del>           | Prin<br>diffe |
| Algorithm Software            | C++/Matlab                                                     | C++/Matlab                                                      |               |
| Data Product Types            | L2, L2G Daily (1 km)<br>L3 8-day, (1 km)<br>L3 Monthly (0.05°) | L2, L2G Daily (750 m)<br>L3 8-day, (1 km)<br>L3 Monthly (0.05°) |               |
| Science Data Products         | - LST<br>- Emissivity<br>(bands 29, 31, 32)                    | - LST<br>- Emissivity<br>(bands 14, 15, 16)                     |               |

MOD21 Band 29 (8.55 µm) Emissivity, 8-day mean, August 2004



#### Prototype VIIRS-TES LST&E Retrieval: Sahel-Sahara test granule



0<sup>°</sup> 5<sup>°</sup>E 10<sup>°</sup>E 15<sup>°</sup>E 20<sup>°</sup>E 25<sup>°</sup>E

MOD21 Band 29 (8.55 µm) Emissivity, 8-day mean, August 2004



### VIIRS M14 (8.55 micron) Emissivity

First use of VIIRS M14 other than cloud mask, RGB's?

Past Studies have shown 8.55 micron emissivity useful for:

- Land Degradation (desertification) monitoring *e.g. French et al. 2008, Hulley et al. 2012*
- Soil Moisture relationships e.g. Mira et al. 2007, Hulley et al. 2009, Masiello et al. 2013
- Land cover, land use change e.g. French et al. 2008, French et al. 2012

0 5 E 10 E 15 E 20 E 25 E



### **VIIRS** Emissivity Validation (2014 data)





# VIIRS LST Validation

| Site                 | NWP Model | Bias (K) | RMSE (K) |
|----------------------|-----------|----------|----------|
| Lake Tahoe<br>(2014) | ECMWF     | -0.14    | 1.06     |
|                      | MERRA     | -0.13    | 1.15     |
|                      | NCEP      | -0.23    | 1.13     |

# Outline

- 1. MOD21 LST&E Product
- 2. MOD21 LST&E Updates
- 3. New NASA VIIRS LST&E Product
- 4. MODIS-VIIRS LST&E Continuity?

#### MODIS/VIIRS Split-window Continuity (current)



#### MODIS/VIIRS TES Continuity (planned)



# Future Goal(s):

- Reduce total number of standard LST products for VIIRS/ MODIS (currently 3 different MODIS LST!).
- 2. Generate Unified products for MODIS and VIIRS standard LST products using uncertainty analysis approach.
- 3. Evaluate MOD/MYD11 C6 LST
- Unified MODIS LST:
  - Merge MOD11 and MOD21 products (Aqua and Terra)
  - MEaSURES Project Objective (2016)
- Unified VIIRS LST:
  - Merge VLST (IDPS) and VIIRS-TES products\*\*
  - **\*\*** Contingent upon characterization of VLST Uncertainty
  - ROSES VIIRS Projective Objective (2017)

# The End

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

## **MODIS LST&E Heritage**

| MODIS LST<br>Products   | Dimensions                     | Spatial<br>Resolution    | Temporal<br>Resolution     | Algorithm                                        | Output<br>Products                                   |
|-------------------------|--------------------------------|--------------------------|----------------------------|--------------------------------------------------|------------------------------------------------------|
| MOD11                   | 2030 lines<br>1354 pixels/line | 1 km at nadir            | Swath<br>2x daily          | Split-Window                                     | - LST                                                |
| MOD11B1                 | 200 rows<br>200 columns        | ~5 km (C4)<br>~6 km (C5) | Sinusoidal<br>2x daily     | Day/Night                                        | - LST<br>- Emissivity<br>(bands 20-23, 29,<br>31,32) |
| MOD21<br>(Collection 6) | 2030 lines<br>1354 pixels/line | 1 km at nadir            | Swath<br>2x daily<br>8-day | Temperature<br>Emissivity<br>Separation<br>(TES) | - LST<br>- Emissivity<br>(bands 29, 31, 32)          |

#### Why MOD21?

- Consistent LST accuracy across all surfaces
- Higher spatial resolution dynamic emissivity (1-km)
- \*\*Current plan is to merge MOD21/MOD11 using Uncertainty Analysis (MEaSUREs)

VIIRS LST&E (Hulley)

#### **MOD21 Science Data Sets**

SDS Long Name Units Valid Fill Scale Offset Data type Range Value Factor Land Surface LST uint16 K 7500-0 0.02 0.0 Temperature 65535 QC Quality control for uint16 0 0-65535 n/a n/a n/a LST and emissivity uint8 1-255 Emis 29 Band 29 emissivity 0 0.002 0.49 n/a Emis 31 uint8 1-255 0 0.002 Band 31 emissivity n/a 0.49 Emis 32 uint8 1-255 0 0.002 0.49 Band 32 emissivity n/a uint8 1-255 0 LST err Land Surface K 0.04 0.0 Temperature error Emis 29 err Band 29 emissivity uint16 0-65535 0 0.0001 0.0 n/a error uint16 Emis 31 err Band 31 emissivity 0-65535 0.0001 0.0 0 n/a error Band 32 emissivity Emis 32 err uint16 0-65535 0.0001 0.0 0 n/a error MODIS view angle 0-180 uint8 0.5 0.0 View angle Deg 0 for current pixel NDVI Normalized uint16 0-65535 0 0.0001 0.0 n/a Difference Vegetation Index PWV Precipitable Water uint16 0-65535 0 0.001 0.0 cm Vapor Ocean-land mask uint8 1-255 0 Oceanpix n/a n/a n/a 999.99 Latitude Pixel Latitude float32 -90 to 90 Deg n/a n/a Longitude Pixel Longitude float32 -180 to 999.99 Deg n/a n/a 180

Table 1. The Scientific Data Sets (SDSs) in the MOD21 product.

#### Well characterized uncertainties!

Table 2. Bit flags defined in the QC SDS in the MOD21\_L2 product. (Note: Bit 0 is the least significant bit).

| Bits  | Long Name                                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 180   | Mandatory QA flags                                    | 00 = Pixel produced, good quality, no further QA info necessary<br>01 = Pixel produced, unreliable quality, emissivity out of physical<br>range (band 32 emissivity < 0.95), or retrieval affected by<br>nearby clouds, or low transmissivity due to opaque atmospheric<br>conditions or high sensor view angles >55°, recommend further<br>examination of QA.<br>10 = Pixel not produced due to cloud<br>11 = Pixel not produced due to reasons other than cloud (e.g.<br>ocean pixel, poorly calibrated input radiance, TES algorithm<br>divergence flag) |
| 382   | Data quality flag                                     | 00 = Good data quality of L1B bands 29, 31, 32<br>01 = Missing pixel<br>10 = Fairly calibrated<br>11 = Poorly calibrated, TES processing skipped                                                                                                                                                                                                                                                                                                                                                                                                            |
| 584   | Cloud flag                                            | 00 = Cloud free pixel<br>01 = Thin cirrus<br>10 = Pixel within 2 pixels of nearest cloud (~2km)<br>11 = Cloud pixel                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 786   | Iterations (k)                                        | 00 = ≥7 (Slow convergence)<br>01 = 6 (Nominal)<br>10 = 5 (Nominal)<br>11 = <5 (Fast)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 988   | Atmospheric Opacity $L^{\downarrow}_{\lambda}/L^{**}$ | 00 = ≥0.3 (Warm, humid air; or cold land)<br>01 = 0.2 - 0.3 (Nominal value)<br>10 = 0.1 - 0.2 (Nominal value)<br>11 = <0.1 (Dry, or high altitude pixel)                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11&10 | MMD                                                   | 00 = >0.15 (Most silicate rocks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

### MOD21 QC

|       |                                                          | 01 = 0.1 - 0.15 (Rocks, sand, some soils)<br>10 = 0.03 - 0.1 (Mostly soils, mixed pixel)<br>11 = <0.03 (Vegetation, snow, water, ice, some soils)           |
|-------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13&12 | Emissivity accuracy<br>(Based on Band 31<br>performance) | 00 = >0.017 (Poor performance)<br>01 = 0.015 - 0.017 (Marginal performance)<br>10 = 0.013 - 0.015 (Good performance)<br>11 = <0.013 (Excellent performance) |
| 15&14 | LST Accuracy                                             | 00 = >2.5 K (Poor performance)<br>01 = 1.5 - 2.5 K (Marginal performance)<br>10 = 1 - 1.5 K (Good performance)<br>11 = <1 K (Excellent performance)         |

MOD21 has well defined Quality Control (QC) parameters based on TES algorithm outputs

### JPL LST&E Validation Sites

| Site name                                                                                                                  | Site type            | Lat           | Lon          | Elevation (km)      | Emissivity source        | IGBP cover type (MOD12)     | IGBP fraction (%) | Data availability |
|----------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|--------------|---------------------|--------------------------|-----------------------------|-------------------|-------------------|
| Bondville, IL                                                                                                              | SURFRAD              | 40.05 N       | 88.37 W      | 0.213               | ASTER (NAALSED)          | Cropland                    | 7.13              | 1994-present      |
| Boulder, CO                                                                                                                | SURFRAD              | 40.12 N       | 105.24 W     | 1.689               | ASTER (NAALSED)          | Grassland                   | 5.87              | 1995-present      |
| Fort Peck, MT                                                                                                              | SURFRAD              | 48.31 N       | 105.10 W     | 0.634               | ASTER (NAALSED)          | Grassland                   | 5.87              | 1994-present      |
| Goodwin Creek, MS                                                                                                          | SURFRAD              | 34.25 N       | 89.87 W      | 0.098               | ASTER (NAALSED)          | Cropland/Natural Vegetation | 8.04              | 1994-present      |
| Penn State, PA                                                                                                             | SURFRAD              | 40.72 N       | 77.93 W      | 0.376               | ASTER (NAALSED)          | Cropland/Natural Vegetation | 8.04              | 1998-present      |
| Desert Rock, NV                                                                                                            | SURFRAD              | 36.63 N       | 116.02 W     | 1                   | ASTER (NAALSED)          | Shrublands                  | 17.7              | 1998-present      |
| Sioux Falls, SD                                                                                                            | SURFRAD              | 43.73 N       | 96.62 W      | 0.473               | ASTER (NAALSED)          | Cropland                    | 7.13              | 2003-present      |
| Algodones, CA                                                                                                              | PI Sand dune         | 32.95 N       | 115.07 W     | 0.094               | In situ/Lab              | Bare                        | 9.11              | n/a               |
| Coral Pink, UT                                                                                                             | PI Sand dune         | 37.04 N       | 112.72 W     | 1.78                | In situ/Lab              | Bare                        | 9.11              | n/a               |
| Great Sands, CO                                                                                                            | PI Sand dune         | 37.77 N       | 105.54 W     | 2.56                | In situ/Lab              | Bare                        | 9.11              | n/a               |
| Kelso, CA                                                                                                                  | PI Sand dune         | 34.91 N       | 115.73 W     | 0.8                 | In situ/Lab              | Bare                        | 9.11              | n/a               |
| Killpecker, WY                                                                                                             | PI Sand dune         | 41.98 N       | 109.1 W      | 2                   | In situ/Lab              | Bare                        | 9.11              | n/a               |
| Little Sahara, UT                                                                                                          | PI Sand dune         | 39.7 N        | 112.39 W     | 1.56                | In situ/Lab              | Bare                        | 9.11              | n/a               |
| Stovepipe Wells, CA                                                                                                        | PI Sand dune         | 36.62 N       | 117.11 W     | 0                   | In situ/Lab              | Bare                        | 9.11              | n/a               |
| White Sands, NM                                                                                                            | PI Sand dune         | 32.89 N       | 106.33 W     | 1.216               | In situ/Lab              | Bare                        | 9.11              | n/a               |
| Namib desert, Namibia                                                                                                      | PI Sand dune         | 24.45 S       | 15.35 E      | 0.828               | In situ/Lab              | Bare                        | 9.11              | n/a               |
| Kalahari desert, Botswana                                                                                                  | PI Sand dune         | 27.325 S      | 21.226 E     | 0.917               | In situ/Lab              | Shrublands                  | 17.7              | n/a               |
| Redwood, CA                                                                                                                | Graybody             | 41.4 N        | 123.7 W      | 0.796               | ASTER speclib            | Evergreen Needleleaf forest | 4.12              | n/a               |
| Texas Grassland, TX                                                                                                        | Graybody             | 36.29 N       | 102.57 W     | 1.28                | In situ (Wan)            | Grassland                   | 5.87              | n/a               |
| Greenland                                                                                                                  | Graybody             | 70 N          | 41 W         | 0                   | ASTER speclib            | Snow and Ice                | ~34               | n/a               |
| Tahoe, CA                                                                                                                  | EOS Cal/Val          | 39.153 N      | 120 W        | 1.9                 | ASTER speclib            | Water                       | tbd               | 2000-present      |
| Salton Sea, CA                                                                                                             | EOS Cal/Val          | 33.248 N      | 115.725 W    | 0                   | ASTER speclib            | Water                       | tbd               | 2008-present      |
| Gobabeb, Namibia                                                                                                           | LSA-SAF              | 23.55 S       | 15.05 E      | 0.408               | In situ/Box Method       | Bare                        | 9.11              | 2008-present      |
| Dahra, Senegal                                                                                                             | LSA-SAF              | 15.34 N       | 15.49 W      | 0.09                | Lab endmember fraction   | Grassland                   | 5.87              | 2009-present      |
| Evora, Portugal                                                                                                            | LSA-SAF              | 38.9 N        | 8.00 W       | 0.016               | Lab endmember fraction   | Savannas                    | 4.23              | 2008-present      |
|                                                                                                                            |                      |               |              |                     |                          |                             |                   |                   |
| SURFRAD = NOAA Surface F                                                                                                   | adiation Budget N    | letwork (ht   | tp://www.es  | rl.noaa.gov/gmd/    | grad/surfrad/index.html) |                             |                   |                   |
| PI Sand dune = Pseudo-inva                                                                                                 | ariant sand dune si  | ites (JPL, ht | tp://emissiv | ity.jpl.nasa.gov/va | lidation)                |                             |                   |                   |
| Graybody = graybody sites                                                                                                  | used for R-based v   | alidation a   | t JPL        |                     |                          |                             |                   |                   |
| In situ/Lab = Sand samples                                                                                                 | collected in the fie | eld and mea   | asured using | a Nicolet spectron  | neter at JPL during 2008 |                             |                   |                   |
| In situ (Wan) = Surface emissivity measured with a sun-shadow method in Dallam County, Texas in April 2005 by Zhengming Wa |                      |               |              |                     |                          |                             |                   |                   |





# MERRA Global Water Vapor (2m)



Time Interpolated at 11hr VIIRS UTC



# Final Transmittance Field



Triangulation-based Interpolation



MODIS LST Validation: Great Sands, Colorado



\*\* Radiance-based LST validation using lab-measured sand samples collected at dune site



MODIS Emissivity Validation: Great Sands, Colorado



# MOD21/MOD11 LST Validation summary: Graybody surfaces (forest, snow/ice, grassland)

|                                              |          | Aqua  | n Day | Aqua Night |       |  |
|----------------------------------------------|----------|-------|-------|------------|-------|--|
|                                              |          | MOD11 | MOD21 | MOD11      | MOD21 |  |
| <b>Redwood Forest, CA</b><br>41.4 N, 123.7 W | Bias [K] | 0.32  | -0.34 | 0.19       | -0.61 |  |
|                                              | RMSE [K] | 0.56  | 0.61  | 0.60       | 0.96  |  |
|                                              |          |       |       |            |       |  |
| <b>Greenland</b><br>70 N, 41 W               | Bias [K] | 0.61  | -0.33 | 0.34       | -0.18 |  |
|                                              | RMSE [K] | 0.73  | 0.50  | 0.56       | 0.35  |  |
|                                              |          |       |       |            |       |  |
| <b>Texas Grassland</b><br>36.29 N, 102.57 W  | Bias [K] | 0.59  | 0.24  | 0.66       | 0.59  |  |
|                                              | RMSE [K] | 0.85  | 0.54  | 1.02       | 0.98  |  |

MOD21 and MOD11 have similar accuracy over graybody surfaces (<1 K)

### **MOD21/MOD11** LST Validation summary: Bare surfaces (pseudo-invariant sand sites)

| Sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Obs | MOD11 | MOD21    |  | MOD11    | MOD21 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|----------|--|----------|-------|
| United and a second sec |     | Bia   | Bias (K) |  | RMSE (K) |       |
| Algodones, CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 956 | -2.89 | -0.05    |  | 3.04     | 1.07  |
| Great Sands, CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 546 | -4.53 | -0.93    |  | 4.63     | 1.17  |
| Kelso, CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 759 | -4.55 | -1.48    |  | 4.62     | 1.67  |
| Killpecker, WY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 463 | -4.51 | -1.19    |  | 4.58     | 1.42  |
| Little Sahara, UT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 670 | -3.71 | -0.60    |  | 3.79     | 0.89  |
| White Sands, NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 742 | -0.73 | -0.29    |  | 1.07     | 0.95  |

MOD11 C5 cold bias of up to ~5 K over bare sites

(due to overestimated classification emissivity)

# Future Work and Summary

- MOD21 PGE in final stages of testing and development in preparation for Collection 6
- Reprocessing of MODIS Terra/Aqua to begin May/June
- Development and optimization of MOD21 algorithm will continue under NASA TERAQ award from 2014-2016
- MOD21 LST&E products are physically retrieved with TES algorithm resulting in similar accuracy (<1.5 K) over all land cover types and a dynamic spectral emissivity product for detection and monitoring of landscape changes
- A unified MOD21/MOD11 LST product is in production for a NASA MEaSUREs project at JPL

### **Theoretical Basis: Planck Function**

$$B_{\lambda} = \frac{C_{1}}{\lambda^{5} \left[ \exp\left(\frac{C_{2}}{\lambda T_{s}}\right) - 1 \right]}$$
$$T_{s} = B_{\lambda}^{-1}$$

where :

 $B_{\lambda}$  = blackbody spectral radiance  $\lambda$  = wavelength  $T_s$  = Surface Temperature

- $C_1$  = first radiation constant
- $C_2$  = second radiation constant



As the temperature increases the peak in the Planck function shifts to shorter and shorter wavelengths

# Temperature/Emissivity retrieval algorithms

To solve the under-determined temperature-emissivity problem:

N spectral measurements (N radiances) with N + 1 unknowns (N emissivity, 1 Temperature)

- 1. Split window approach
  - Requires 2 bands

$$LST = a_0 + a_1 T_{11\mu m} + a_2 (T_{11\mu m} - T_{12\mu m})$$

- Prescribed spectral emissivity
- Regression coefficients should represent all configurations (atmospheric water content, view angle, surface T<sub>air</sub>, ...)

#### 2. Temperature-Emissivity Separation (TES) – ASTER approach

- Multispectral (minimum 3 bands)
- Requires atmospheric profiles for full atmospheric correction with Radiative Transfer Model
- Based on Emissivity model (Calibration Curve)





## **Spectral Emissivity**

Emissivity: ratio of the spectral radiance of a material to that of a blackbody at the same temperature:

$$\mathcal{E}_{\lambda} = \frac{L_{\lambda}(\text{Material})}{L_{\lambda}(\text{Blackbody})}$$

 $L_{\lambda}$  = Spectral Radiance



| VIIRS – TES Processing Steps                              | Test Code<br>Implementation | Evaluation   |
|-----------------------------------------------------------|-----------------------------|--------------|
| Read L1B and Cloud Mask Data<br>(Fill radiances – bowtie) | $\checkmark$                | $\checkmark$ |
| NWP atmospheric data<br>(read, geolocate, interpolate)    | $\checkmark$                | $\checkmark$ |
| Run RTTOV Radiative Transfer                              | $\checkmark$                | $\checkmark$ |
| Test NWP Accuracy<br>(ECMWF, MERRA, NCEP)                 | $\checkmark$                | In progress  |
| Implement Water Vapor Scaling<br>(WVS) Model              | ×                           | ×            |
| Temperature Emissivity<br>Separation (TES)                | $\checkmark$                | $\checkmark$ |
| Validation                                                | $\checkmark$                | In progress  |