Marine inherent optical properties (IOPs) from MODIS & VIIRS with Extension to Optically Shallow Waters

Ocean Ecology Laboratory NASA Goddard Space Flight Center

> MODIS Science Team Meeting Silver Spring, Maryland 21 May 2015

what are marine inherent optical properties (IOPs)? spectral absorption & scattering coefficients

what can marine IOPs tell me?

they describe the contents of the upper ocean

- phytoplankton abundance & community structure
- non-algal suspended particles
- particulate & dissolved carbon
- diffuse attenuation / water clarity

why study marine IOPs from space?

satellite time-series provide "big picture" views to better understand responses to climate change & for inclusion in bio-hydrographic models

presentation outline

Part 1: implementation review

Part 2: validation matchup

Part 3: algorithm updates

Part 4: status overview

relating ocean color & in-water optical properties

$$R_{rs} = G\left(\frac{b_{bw} + M_{bp}b_{bp}^*}{a_w + M_{dg}a_{dg}^* + M_{\varphi}a_{\varphi}^*}\right)$$

Optically-active constituents

- *w* = water
- *dg* = colored dissolved and detrital matter
- φ = phytoplankton
- *p* = particles

relating ocean color & in-water optical properties

- 6 knowns (the 6 visible MODISA R_{rs}), or, 5 for VIIRS
- solve for unknown *M* coefficients \rightarrow non-linear least squares

relating ocean color & in-water optical properties

SAAs developed routinely over 30 yrs many successfully retrieve **three** components many overlapping approaches exist power-law, η: Fixed; Lee et al. (2002) Ciotti et al. (1999); Hoge & Lyon (1996); Loisel & Stramski (2001); Morel (2001)

Implementation

a(44	3) GIOP	(m^ - 1)		
0.01	0.03	0.07	0.19	0.50

MODIS Aqua 18 April 2008

Data: NASA OBPG Processing: SeaDAS, GIOP Algorithm with default options

bbp(443) GIOI) (m^-1)		
0.00	0.00	0.00	0.00	0.01

presentation outline

Part 1: implementation review

Part 2: validation matchup

Part 3: algorithm updates

Part 4: status overview

a_giop488	0.01912, 0.30815	0.02306, 0.51810	33	0.86918	-0.24917	0.87421	0.80311	22.52950	0.16997
a_giop531	0.04570, 0.21564	0.04743, 0.34321	33	0.77114	-0.32126	0.81197	0.83466	16.53372	0.13213
a_giop547	0.05470, 0.19041	0.05926, 0.27440	33	0.79497	-0.28821	0.79859	0.84145	15.85549	0.11162
a_giop667	0.36955, 0.57674	0.43053, 0.54554	33	1.63666	0.21462	0.58994	1.00351	2.30077	0.02902

* statistical calculations based on log10

seabass.gsfc.nasa.gov

bbp_giop667	0.00039, 0.00699	0.00030, 0.00732	62	1.12178	0.25239	0.64448	0.95457
bbp_giop547	0.00054, 0.00788	0.00043, 0.00818	62	1.11514	0.22898	0.65346	0.94149
bbp_giop531	0.00055, 0.00802	0.00046, 0.00836	63	1.10532	0.20120	0.65546	0.93266

* statistical calculations based on log10

seabass.gsfc.nasa.gov

0.19367

0.20438

15.73514

18.34813

MODIS Aqua IOP Products & Uncertainties

Absorption due to gelbstof and detritus at 443 nm (m⁻¹)

Particle backscatter at 443 nm (m⁻¹)

Uncertainty on abs due to gelbstof and detritus at 443 nm (m⁻¹)

Uncertainty on particle backscatter at 443 nm (m⁻¹)

presentation outline

Part 1: implementation review

Part 2: validation matchup

Part 3: algorithm updates

Part 4: status overview

Algorithm updates

Retrieving marine inherent optical properties from satellites using temperature and salinitydependent backscattering by seawater

P. Jeremy Werdell,^{1,2,*} Bryan A. Franz,¹ Jason T. Lefler,^{1,3} Wayne D. Robinson,^{1,4} and Emmanuel Boss²

¹NASA Goddard Space Flight Center, Code 616, Greenbelt, Maryland 20771, USA
²School of Marine Sciences, 458 Aubert Hall, University of Maine, Orono, Maine 04401, USA
³JHT Incorporated, 2710 Discovery Drive, Suite 100, Orlando, Florida 32826, USA
⁴Science Applications International Corporation, 1710 SAIC Drive, McLean, Virginia 22102, USA
⁵Jeremy,werdell@nasa.gov

Temperature-salinity dependence of b_{bw}

@AGU PUBLICATIONS

Journal of Geophysical Research: Oceans

RESEARCH ARTICLE

10.1002/2014JC010224

Key Points:

 A new ocean color algorithm for optically shallow waters is described
 The algorithm was tested in waters of the Great Barrier Reef, Australia
 Shallow water effects are corrected using bathymetry and benthic albedo maps

Supporting Information:

Readme
 Table S1

A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization

Lachlan I. W. McKinna^{1,2}, Peter R. C. Fearns², Scarla J. Weeks³, P. Jeremy Werdell⁴, Martina Reichstetter³, Bryan A. Franz⁴, Donald M. Shea^{4,5}, and Gene C. Feldman⁴

¹NASA Postdoctoral Program Fellow, Ocean Ecology Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, ²Remote Sensing and Satellite Research Group, Department of Imaging and Applied Physics, Curtin University, Perth, Western Australia, ³Biophysical Oceanography Group, School of Geography, Planning and Environmental Management, University of Queensland, Queensland, Brisbane, Australia, ⁴Ocean Ecology Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, ⁵Science Applications International Corporation, Greenbelt, Maryland, USA

Optically shallow waters

JGR

Algorithm updates:

temperature & salinity dependence of b_{bw}

McKinna, NASA MODIS ST, May 2015

Algorithm updates:

Shallow Water Inversion Model (SWIM):

- Clear, shallow water
- Light reflected off seafloor contaminates R_{rs}
- Solution: use Ancillary data inputs (depth and seafloor albedo).

Sample scene: MODIS Aqua 22 May 2009

Algorithm updates: Raman scattering correction for Rrs

Sample scene: MODIS Aqua 22 May 2009

McKinna, NASA MODIS ST, May 2014

Algorithm updates:

Raman scattering correction for Rrs

Example outputs: GIOP-derived b_{bp}(443)

Sample scene: MODIS Aqua 22 May 2009

McKinna, NASA MODIS ST, May 2014

presentation outline

Part 1: implementation review

Part 2: validation matchup

Part 3: algorithm updates

Part 4: status overview

Status overview

- ✓ Temperature-salinity correction
- ✓ Shallow water inversion module
- ✓ Raman scattering correction
- Ensemble methods aLMI
- Spectral decomposition a total absorption e.g. Zheng et al. (2015)
- Bayesian optimization uncertainties
- Multi-mission algorithm compatibility
- Hyperspectral extension PACE mission

thanks

Extras...

* statistical calculations based on log10

seabass.gsfc.nasa.gov

bbp_giop443	-0.00021, 0.01027	0.00061, 0.00928	117	1.20387	0.38492	0.65140	0.77731	28.82437	0.20814
bbp_giop488	-0.00021, 0.00915	0.00048, 0.00876	117	1.18332	0.33986	0.66091	0.76668	26.92732	0.20915
bbp_giop531	-0.00021, 0.00827	0.00039, 0.00836	117	1.16406	0.29400	0.66399	0.76288	25.69888	0.21285
bbp_giop547	-0.00021, 0.00798	0.00035, 0.00818	117	1.15178	0.26799	0.66364	0.77430	25.25570	0.21240
bbp_giop667	-0.00018, 0.00638	0.00022, 0.00732	117	1.09712	0.12958	0.65585	0.74758	27.85617	0.22721

* statistical calculations based on log10

seabass.gsfc.nasa.gov

a generalized IOP (GIOP) inversion model

				SeaWiFS			MODISA				
		N	r ²	Slope (SE)	Ratio	MPD	N	r^2	Slope (SE)	Ratio	MPD
_	412	123	0.30	0.77 (0.07)	0.93	25.2	56	0.69	0.92 (0.07)	1.00	13.2
	443	123	0.31	0.79 (0.07)	0.92	25.0	56	0.69	0.95 (0.08)	1.02	17.2
bbo	490	123	0.32	0.82 (0.07)	0.90	24.2	56	0.69	1.00 (0.08)	0.99	18.2
	555°	123	0.32	0.84 (0.07)	0.87	25.2	56	0.68	1.05 (0.09)	0.99	18.8
	670*	123	0.31	0.87 (0.07)	0.83	28.5	56	0.63	1.06 (0.09)	1.04	23.0
	412	192	0.74	1.12 (0.04)	0.87	30.9	21	0.45	0.76 (0.14)	0.89	36.9
	443	192	0.81	1.07 (0.03)	0.81	25.5	21	0.73	0.77 (0.10)	0.88	16.9
a	490	192	0.80	1.01 (0.03)	0.76	29.3	21	0.84	0.79 (0.07)	0.79	21.1
	555°	192	0.67	1.03 (0.05)	0.68	42.3	21	0.86	0.74 (0.07)	0.75	28.9
	670 ^b	180	0.69	1.19 (0.05)	0.87	45.0	17	0.47	0.91 (0.19)	1.88	87.8
	412	192	0.51	1.12 (0.06)	0.86	45.7	20	0.07	0.96 (0.27)	0.88	40.2
	443	192	0.51	1.08 (0.06)	0.78	49.8	20	0.09	0.96 (0.27)	0.81	34.8
ada	490	192	0.48	1.01 (0.06)	0.64	54.2	20	0.11	0.96 (0.26)	0.68	41.8
	555°	191	0.42	0.93 (0.06)	0.50	62.5	20	0.12	0.96 (0.26)	0.46	55.3
	670*	183	0.44	0.82 (0.05)	0.34	72.0	20	0.13	0.98 (0.26)	0.32	67.7
	412	195	0.72	1.17 (0.05)	0.73	35.5	25	0.85	1.14 (0.09)	0.91	22.5
	443	197	0.68	1.14 (0.05)	0.80	31.5	25	0.82	1.20 (0.11)	0.90	31.0
aø	490	197	0.68	1.12 (0.05)	0.86	30.1	25	0.81	1.13 (0.11)	0.93	33.2
	555°	186	0.71	1.17 (0.05)	0.95	44.8	25	0.82	1.14 (0.10)	0.97	36.6
	670*	195	0.73	1.05 (0.04)	1.11	48.6	24	0.81	1.24(0.12)	1.35	49.3

Table 3. Regression Statistics for GIOP-DC Using the SeaWiFS and MODISA Match-Up Data Sets

"indicates that the wavelength is 547 nm for MODISA.

^sindicates that the wavelength is 667 nm for MODISA.

Werdell et al. (2013)

Algorithm updates:

Optically shallow waters:

- Semi-analytical algorithm following Lee et al. (1998, 1999)
- Spectral matching type algorithm (other approaches exist e.g. Barnes et al. (2013))
- Water-column depth and benthic albedo maps used as ancillary data inputs

Clear waters of northern Great Barrier Reef, Australia

Algorithm updates: Optically Shallow Flag – function of IOPs and geometric depth

Sample scene: MODIS Aqua 22 May 2009

Algorithm updates:

Raman scattering correction for Rrs

Model for the interpretation of hyperspectral remote-sensing reflectance

Zhongping Lee, Kendall L. Carder, Steve K. Hawes, Robert G. Steward, Thomas G. Peacock, and Curtiss O. Davis

1994

2013

2013

JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS, VOL. 118, 4241-4255, doi:10.1002/jgrc.20308, 2013

Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing

Zhongping Lee,¹ Chuanmin Hu,² Shaoling Shang,³ Keping Du,⁴ Marlon Lewis,⁵ Robert Arnone,⁶ and Robert Brewin⁷

Influence of Raman scattering on ocean color inversion models

Toby K. Westberry,^{1,*} Emmanuel Boss,² and Zhongping Lee³ ¹Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331-2902, USA ²School of Marine Sciences, University of Maine, Orono, Maine 04469-5706, USA ³Environmental, Earth, and Ocean Sciences Department, University of Massachusetts Boston, Boston, Massachusetts 02125, USA ^{*}Corresponding author: toby.westberry@science.oregonstate.edu

> Received 18 March 2013; revised 12 June 2013; accepted 6 July 2013; posted 8 July 2013 (Doc. ID 187324); published 1 August 2013

Semianalytical

$$R_{\rm rs}^{\ R}(\lambda) \approx 0.072 \frac{b_R(\lambda_x) E_d(0^-, \lambda_x)}{[2a(\lambda) + a(\lambda_x)] E_d(0^-, \lambda)} \cdot \quad (B12)$$

Empirical

$$RF(\lambda) = \alpha(\lambda) \left(\frac{R_{rs}^{T}(440)}{R_{rs}^{T}(550)} \right) + \beta_{1}(\lambda) \left(R_{rs}^{T}(550) \right)^{\beta_{2}(\lambda)}.$$
(11)

$$R_{rs} = \frac{R_{rs}^{T}}{1 + RF},$$
(13)

Semianalytical

$$R_{\rm rs,Raman}(0^+,\lambda_{\rm em}) = \frac{t^2}{n^2} \frac{\tilde{\beta}^r(\theta_s \to \pi) b_r(\lambda_{\rm em}) E_d(0^+,\lambda_{\rm ex})}{(K_d(\lambda_{\rm ex}) + \kappa_L(\lambda_{\rm em})) E_d(0^+,\lambda_{\rm em})} \times \left[1 + \frac{b_b(\lambda_{\rm ex})}{\mu_u(K_d(\lambda_{\rm ex}) + \kappa(\lambda_{\rm ex}))} + \frac{b_b(\lambda_{\rm em})}{2\mu_u\kappa(\lambda_{\rm em})}\right].$$
(7)

Algorithm updates: Raman scattering correction for Rrs Example implementations: GIOP-derived b_{bp}(443)

