Will ensemble approach improve surface PM2.5 estimate from space?

Jun Wang Yun Yue, Xiaoguang Xu

Yang Liu

Robert Levy

James J. Szykman

In collaboration with

Robert Holz

VIIRS,13:30 Local Time 14.1 revs/day

Work/Data Flow & Approaches

Black: datasets & model already in place; green: existing model capability and data flow that will be *improved*; red: the data and data flow will be created

National Ambient Air Quality Standards NAAQS as of Oct. 2011

Pollutant [final rule cite]		Primary/ Secondary	Averaging Time	Level	
Carbon Monoxide [76 FR 54294, Aug 31, 2011] Lead [73 FR 66964, Nov 12, 2008]			8-hour	9 ppm	
		primary	1-hour	35 ppm	
		primary and secondary Rolling 3 month average		0.15 µg/m ^{3 (1)}	
Nitrogen Dioxide [75 FR 6474, Feb 9, 2010] [61 FR 52852, Oct 8, 1996]		primary	1-hour	100 ppb	
		primary and secondary	12 μg/m ³ , FR, 15 Jan. 2013 ^b ⁽²⁾		
<u>Ozone</u> [73 FR 16436, Mar 27, 2008]		primary and secondary	8-hour	0.075 ppm ⁽³⁾	
<u>Particle Pollution</u> [71 FR 61144, Oct 17, 2006]	PM _{2.5}	primary and secondary	Annual	15 µg/m ³	
			24-hour	35 µg/m ³	
	PM10	primary and secondary	24-hour	150 µg/m ³	
<u>Sulfur Dioxide</u> [<u>75 FR 35520, Jun 22, 2010]</u> [38 FR 25678, Sept 14, 1973]		primary	1-hour	75 ppb (4)	
		secondary	3-hour	0.5 ppm	

Existing PM_{2.5} ground monitoring in continental U.S.

20 June 2013

21 June 2013

Blue: ~1000 stations using Federal Reference Method (FRM) as part of Air Quality System (AQS). Measure daily PM2.5 at daily, every 3rd or 6th day frequency.

Red: ~600 stations using a variety of techniques to provide continuous (hourly resolution) PM2.5 mass, in support of the AIRNow program.

Still, many areas remain unmonitored.

Use of EPA Remote Sensing Information Gateway to deliver VIIRS AOD/PM_{2.5} data products

http://ofmpub.epa.gov/rsig/rsigserver?index.html

- Current satellite WCS:
 - MODIS C6 (10 km, 3 km, DB)
 - > CALIOP, GASP (GOES AOD)
 - Prototype NOAA-VIIRS
- Establish OGC compliant Web Coverage Service (WCS) between PEATE and RSIG to add NASA- VIIRS data (This project).
- GEOS-Chem scaling factors used to create a daily Look-Up-Table (LUT) of the spatial varying relation of AOD and PM_{2.5} (van Donkelaar et. al., 2012, ES&T).
- Prototype use of AOD-to-PM2.5 scaling factors via regional models (WRF-CMAQ & WRF-CHEM) and explore ensemble type approach (This project).

SATELLITE MEASUREMENTS OF AEROSOL MASS AND TRANSPORT

Atmospheric Environment, 1984.

ROBERT S. FRASER

Laboratory for Atmospheric Sciences, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.

YORAM J. KAUFMAN

University of Maryland in collaboration with Goddard Laboratory for Atmospheric Sciences, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.

and

R. L. MAHONEY

Science Systems and Applications, Inc. 10210 Greenbelt Road, Seabrook, MD 20706, U.S.A.

Fig. 3. Algorithm for deriving aerosol properties from satellite observations.

Atmospheric loading of particulate sulfur (gm⁻²) on 31 July 1980.

Derived from GOES visible reflectance are

- Aerosol optical thickness (AOT)/depth (AOD)
- Columnar amount of sulfur

 Table 1. Comparison of columnar masses of sulfur derived from ground-based and satellite observations. The satellite observations were made at 1300 GMT on 31 July 1980

l Place	2 Latitude (deg. N)	3 Longitude (deg. W)	4 Particulate sulfate mass (µg m ⁻³)	5 Columnar sulfur mass (g m ⁻²)	6 Reference	7 Satellite sulfur mass (g m ⁻²)	8 Ratio columns 7 and 5
Virginia	38.7	78.3	38	0.018	Ferman et	0.040	2.3
Virginia	38.7	78.3	38	0.018	Stevens <i>et</i> al. (1984)	0.040	2.3
Near Baltimore	39.3	76.4	24	0.014	Tichler <i>et</i> <i>al.</i> (1981)	0.017	1.2

NASA Earth Observation System

Updated Jan. 2015

Satellite Remote Sensing of Aerosol Transport

Past studies on AOD vs. surface PM concentration

(from Hoff and Christopher, 2009, JAWMA)

Author	Sensor	Date	Region	Number of Ground Monitors	PM _{2.5} /PM ₁₀	Linear Regression	R
Wang ¹⁵⁴	MODIS (Terra)	2002	Alabama	7	PM _{2.5} (24 hr) ^a	$77.0\tau = 0.23$	0.67
	MODIS (Aqua)	2002	Alabama	7	PM25 (24 hr)a	$68.6\tau + 1.93$	0.76
	Average	2002	Alabama	7	PM _{2.5} (24 hr) ^a	$72.3\tau + 0.85$	0.98
Chu ¹⁵³	MODIS	August–October 2000	Italy	1	PM ₁₀	$54.7\tau + 8.0$	0.82
Engel-Cox ¹⁶¹	MODIS	April–September 2002	United States	1338	PM _{2.5} PM _{2.5} (24 hr)	$22.6\tau + 6.4$ $18.7\tau + 7.5$	0.4 0.43
Liu ²⁰⁸	MISR	2003	St. Louis	22	PM ₂₅	NA	0.8
Engel-Cox ¹⁶³ MODIS	MODIS	July 1 to August 30,	Baltimore	4	PM _{2.5}	$31.1\tau + 5.2$	0.65
		2004			PM _{2.5} (<pbl)< td=""><td>$48.5\tau + 6.2$</td><td>0.65</td></pbl)<>	$48.5\tau + 6.2$	0.65
					PM _{2.5} (24 hr)	25.3τ + 11.1	0.57
					PM _{2.5} (24 hr < PBL)	64.8τ + 1.76	0.76
Liu ¹⁶⁹	MISR	2001	Eastern United States	346	PM ₂₅		- e.i
Al-Saadi ¹⁶⁴	MODIS	Review	United States		PM _{2.5}	62.0 1	NA
Gupta ¹⁷¹	MODIS	2002 and July- November 2003	Global cities	26	PM ₁₀ ^a	141.0 т	0.96
Koelemeijer ¹⁵² MODIS	MODIS	2003	Europe	88 (PM _{2.5})	PM ₂₅ ^a	NA	0.63
				2.0	PM ₁₀ ^a	$214.0\tau - 42.3$	0.58
Kacenelenbogen ¹¹⁸	POLDER	April–October 2003	France	28	PM ₂₅	$26.6\tau + 13.2$	0.7
Gupta ¹⁷³	MODIS	February 2000 to	Southeastern	38	PM _{2.5}	$29.4\tau + 8.8$	0.62
		December 2005	United States		PM _{2.5} (24 hr)	$27.5\tau + 15.8$	0.52
Hutchison ¹⁵⁸ MODIS	MODIS	August-November	Texas	28	PM25 (August)a	68.8 _T - 39.9	0.47
		2003 and 2004			PM _{2.5} (September) ^a	59.7 ₇ - 17.2	0.98
Paciorek ¹⁷⁷	GOES-12	2004	United States	Not given	PM25 (24 hr)	NA	0.5
					PM _{2.5} (yearly)	NA	0.75
An ¹⁷⁹	MODIS	April 3-7, 2005	Beijing	6	PM ₁₀ ^a	$21.7\tau + 6.1$	0.92
					PM _{2.5} ^a	$31.1\tau + 5.1$	0.92
	•				PM ₂₅	$120\tau + 5.1$	0.72

multivariate regression, Kriging, neutral network, etc...

AOD vs. surface PM is non-linear

 $\tau = f(rh) \times Q_{dext}(0) \times m_{daer}(0) \times H_{eff} \quad (1)$

$$H_{\rm eff} = \int_0^{\rm TOA} \beta_{\rm ext}(z) \, dz \Big/ \beta_{\rm ext}(0) \tag{2}$$

CTM has been used to provide ancillary information needed to derive surface $PM_{2.5}$ from AOD. (Liu et al., 2004; Wang et al., 2010; van Donkelaar et al., 2010).

Challenges & Strategies

- Challenges:
 - Vertical distribution, particle size distribution, aerosol composition, sampling bias
 - Cloudy conditions
- Strategies:
 - Ensemble modeling using WRF-Chem, WRF-CMAQ, and GEOS-Chem
 - Spatial & statistical modeling

Direct Use of Reflectance to constrain CTM Model

Results for April 2008 over China

Wang et al., 2010

Surface PM_{2.5} climatology

$PM_{2.5}$ averaged during 1/1/2001 – 12/31/2006, 10x10 km² MODIS & MISR AOD + a CTM (GEOS-Chem)

An ensemble approach multiple AOD products + multiple models

- Hypothesis:
 - each satellite AOD product has its unique strengths and weaknesses, and a combination of them can yield a better AOD product than any individual product
- Questions:
 - if the climatology of PM_{2.5}-AOD ratio can be better represented by the ensemble mean of multi-models (instead of one model, GEOS-Chem, that is currently used);
 - if the combination of AOD from different sensors and algorithms together with $PM_{2.5}$ -AOD ratio from (a) can yield the best estimate of $PM_{2.5}$ than from each individual source of AOD, and
 - the cost-and-benefits of using hindcast to estimate surface $PM_{2.5}$ from AOD.

Evaluation of several PM_{2.5} forecast models using data collected during the ICARTT/NEAQS 2004 field study

S. McKeen,^{1,2} S. H. Chung,^{1,2} J. Wilczak,³ G. Grell,^{2,4} I. Djalalova,^{2,3} S. Peckham,^{2,4} W. Gong,⁵ V. Bouchet,⁶ R. Moffet,⁶ Y. Tang,⁷ G. R. Carmichael,⁷ R. Mathur,^{8,9} JGR, 2007.

The ensemble PM_{2.5} forecast, created by combining six separate forecasts with equal weighting, is also evaluated and shown to yield the best possible forecast in terms of the statistical measures considered.

Focusing on June 2012

Monthly GEOS-Chem PM2.5 (ug/m³) overlaid with 650 EPA sites

A case study

100 300 PM2.5 Mass Concentration (µg/m³)

WRF-Chem

Correlation coefficient (one-tailed 5% significance level): 377 EPA sites

Correlation coefficient (one-tailed 5% significance level): 332 EPA sites

R

It appears that WRF-Chem does a better job in simulating surface PM2.5 over Texas, albeit its large positive bias over eastern part of U.S.

Correlation coefficient (one-tailed 10% significance level): 262 EPA sites

Change of Bias (ug/m³) by Applying Satellite AOD: 476 EPA sites

Distribution of sorted relative bias and correlation coefficient for each station

Use of EPA Remote Sensing Information Gateway to delivery NASA-VIIRS AOD/PM_{2.5} data products

- User Interface for New RSIG 3-Dimensional application.
- Delivers data/ products to user via web coverage services.
- Beta testing to begin summer
 2015.

Early morning CALIOP overpass shows extremely high extinction (532 nm) in the lowest 2 km associated with smoke from the RIM fire (Aug 2013).

RSIG3D

Model

aqs.pm25

loaded.

Help Control Widget

VIIRS AOD (NOAA-EDR) captures high AOT covering most of MT and moving into the Dakotas, both areas associated with sparse surface $PM_{2.5}$ monitoring coverage.

Lon:-108.799515, Lat:43.741295, AQS:, VIIRS:

N

.516 63

402

Thank you!

Applying MODIS AOD reduces biases in GEOS-Chem PM_{2.5}

Change of Daily Absolute-Bias (ug/m³) by Applying Satellite AOD: 476 EPA sites