Sinusoidal Vs. Geographic Projection

Nima Pahlevan1,2, Sudipta Sarkar1,2, Virginia Kalb2, Eric Vermote2, Sadashiva Devadiga1,2, Gary Lin1, Robert E. Wolfe2, Miguel Roman2, and Chris Justice3

1Science, Systems, And Applications, Inc. (SSAI)
2NASA Goddard Space Flight Center (619)
3Department of Geographical Sciences, University of Maryland

MODIS/VIIRS Science Team Meeting, Land breakout
Silver Spring MD
June 2016
Introduction

• Sinusoidal projection was adopted...
 – It was recommended by climate modelers
 – It preserves the area
 – There is less distortion over tropical areas
 – There is less computation over high-latitude areas

• Geographic projection, on the other hand, facilitates easier integration with various geo-visualization tools available nowadays
Sinusoidal Projection

Raster Mosaic Dataset from scaled EVI TOC, defined 'nodata', with underlying shaded relief DEM at 30 arcseconds (USGS)
Geographic Projection

Raster Mosaic Dataset from scaled EVI TOC, defined ‘nodata’, with underlying shaded relief DEM at 30 arcseconds (USGS)
Objective

- Evaluate the impact of change in projection on Land Surface Reflectance and NDVI Products over “Golden Tiles”
Method: Simulate Daily MODIS/VIIRS Products

- OLI-derived surface reflectance products
- Scan OLI data according to VIIRS and MODIS
 - Viewing geometries for one orbit cycle AND
 - The Point Spread Functions
- Swath-level simulated MODIS and VIIRS products
- 1km gridding (GEO VS. SIN)
- Intercomparison

Impacts of Projection Change on Land Products - Nima Pahlevan SSAI / NASA GSFC
Spatial Sampling Used in Simulations

Sample Simulated NDVIs (SIN Vs. GEO)

h30v11 – d2014016 – t0502030

h31v11 – d2014016 – t0502030
Metrics

• Histogram-based analysis of difference grids of SIN and GEO for LSR and NDVI
 – Per-pixel (i): Percent Difference (PD) and Absolute PD (APD)

 \[PD_i = \frac{(NDVI_{SIN} - NDVI_{GEO})}{((NDVI_{SIN} + NDVI_{GEO})/2)} \times 100 \]

 – Per-area: histogram mean (PD & APD) and RMSD
 – Median/min/max of mean values (multiple SIN-GEO)
Australia (barren)
NW Canada (boreal)
Northern Chile

Impacts of Projection Change on Land Products - Nima Pahlevan SSAI / NASA GSFC
 NDVI

- Ensemble of simulated difference images (various orbits and land covers)
Conclusion

• SIN > GEO yield, on average, insignificant differences (PD < 0.5% & difference < 1e-3) in LSR and NDVI products.

• Recommendation
 – Depending on user needs, it is possible to transition to geographic projection with very minimal impact on land products.
 – Further analyses of the impact can be done by science PIs (if needed)
The simulated MODIS LSR swaths re-projected and overlaid onto gridded MODIS LSRs (MYD09) shown in RGB for the SW USA (left) and NE China (DOY = 247) sites. Courtesy of Pete Ma (NASA GSFC / SSAI).