Ocean break-out
Current advances (and challenges) with the PIC algorithm

William M. Balch, Catherine Mitchell, Chuanmin Hu, Bruce Bowler
Bigelow Laboratory for Ocean Sciences
E. Boothbay, ME 04544
Current status of the 2-band/3-band PIC algorithm

- PIC retrievals by VIIRS and MODIS are similar, except VIIRS has not been validated in any large, high concentration blooms.
- Latest processing, incorporating 2015 cruises... algorithm coefficients are further refined but change is incremental.
PIC by VIIRS and MODIS
The relation between chl and acid-labile b_{bp531}
A differencing algorithm for PIC
Overview

• A new method for estimating particulate inorganic carbon (PIC) concentrations from remote sensing reflectance has been developed.

• Using an extensive global dataset of PIC, the reflectance difference approach of Hu et al. (2012) was applied to derive a relationship between PIC and the color-index (CI), hereafter referred to as the PICCI algorithm.

• The wavelengths used here in deriving the color-index differ from those used in the Hu et al. (2012) chlorophyll (Chl) algorithm to limit the affect of Chl and CDOM:

\[
CI = R_{\text{rs}}(\lambda_{2}) - [R_{\text{rs}}(\lambda_{1}) + \lambda_{2} - \lambda_{1} / \lambda_{3} - \lambda_{1} (R_{\text{rs}}(\lambda_{3}) - R_{\text{rs}}(\lambda_{1}))]
\]

<table>
<thead>
<tr>
<th></th>
<th>(\lambda_{1})</th>
<th>(\lambda_{2})</th>
<th>(\lambda_{3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hu et al</td>
<td>443</td>
<td>547</td>
<td>667</td>
</tr>
<tr>
<td>This study</td>
<td>547</td>
<td>667</td>
<td>869</td>
</tr>
</tbody>
</table>
Chlorophyll \(a \) algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference

Chuanmin Hu,\(^1\) Zhongping Lee,\(^2\) and Bryan Franz\(^3\)
Color Index algorithm for PIC: Proof of concept

Differing PIC concentrations

Wavelength: nm

Low PIC

High PIC

Differing CHL concentrations

Wavelength: nm

Low CHL

High CHL

Patagonian Shelf, January 2008

6/8/2016

Mitchell et al. in prep

Balch et al.-Bigelow Laboratory
The data set, 15 cruises

N=2,022
Relationship between PIC and color index

Relationship between field measurements of PIC and CI derived from MODIS Aqua $R\downarrow rs$ data, shown on both a linear (left hand plot) and logarithmic scale (right hand plot)

$y(x) = a_0 + a_1 \times x$

$a_0 = -0.00058229$

$a_1 = -0.68703$

$r^2 = 0.804$

6/8/2016

Balch et al.-Bigelow Laboratory

Mitchell et al. in prep
Validation of PIC$_{Cl}$ algorithm

Performance of (a) the PIC$_{Cl}$ algorithm and (b) the current merged two and three band PIC algorithm (Balch et al., 2005 & Gordon et al., 2001), shown in both linear and logarithmic scales.

- a) PIC$_{Cl}$ algorithm:
 - $r^2 = 0.761$
 - RMSE = 0.774

- b) Current merged two and three band algorithm:
 - $r^2 = 0.627$
 - RMSE = 0.930

PIC from field measurements: $mol m^{-3}$
Let’s compare three CI-style algorithms: 2-band (547, 667), 3-band (547, 667, 869) and alternate 3-band (547, 667, 748nm).

CI-2 (547,667)

\[r^2 = 0.842 \]

CI-3 (547,667,869)

\[r^2 = 0.848 \]

CI-3 (547,667,748)

\[r^2 = 0.851 \]
Application to MODIS Aqua data

(a) PIC from PIC_{CI} algorithm

(b) PIC from current merged two and three band algorithm

(a) and (b) Global maps of the average PIC concentration for December 2015 (A and B) and (C) the distribution of the PIC concentration in each of the maps

6/8/2016
Balch et al.-Bigelow Laboratory

Mitchell et al. in prep
The Patagonian Shelf, 10th December 2008, with two regions of interest (ROI) highlighted. Both ROIs show areas where the PIC\textsubscript{CI} algorithm is more resistant to atmospheric effects than the current algorithm, with less speckling evident in the rectangular ROI and more data recovered in the circular ROI for the PIC\textsubscript{CI} algorithm.
Application to MODIS Aqua data

The low CHL Atlantic gyre, 3rd October 2011. The highlighted region shows how more detail is obtained at lower PIC levels with the PIC_{CI} algorithm. The yellow region in the PIC_{CI} algorithm image is where PIC was calculated to be negative.
Conclusions/Summary

• In very clear waters with low R_{rs} signals, PIC from the PIC$_{Cl}$ algorithm can be negative, resulting in a reduced number of retrievals.
• There is no hard cut off using the PIC$_{Cl}$ algorithm (compared to current algorithm), resulting in a natural lognormal distribution of PIC across the globe, with slightly higher mean value of PIC.
• The PIC$_{Cl}$ algorithm is more resistant to atmospheric effects (as evidenced by (i) less speckling and (ii) more data in regions were the 2B/3B algorithm fails).
• Thank you!