Diffuse Attenuation and Secchi Depth Products from MODIS and VIIRS: Product of Ocean Transparency

ZhongPing Lee

University of Massachusetts Boston
Acknowledgements:

NASA Suomi National Polar-orbiting Partnership
NASA Ocean Biology and Biogeochemistry
\[E_d(\lambda, z) = E_d(\lambda, 0-) e^{-K_d(\lambda) z} \]

Diffuse attenuation coefficient

Morel:
\[K_d(\lambda) = K_w(\lambda) + \alpha(\lambda) [Chl]^\beta(\lambda) \]

Austin & Petzold (1986):
\[K_d(\lambda) = K_w(\lambda) + M(\lambda) [K_d(490) - K_w(490)] \]
Austin & Petzold (1981):

\[K_d(490) = A \left(\frac{L_w(490)}{L_w(555)} \right)^B \]

\[K_d(490) = \text{Fun} \left(\frac{R_{rs}(490)}{R_{rs}(555)} \right) \]

\[\log_{10}(K_{bio}(490)) = a_0 + \sum_{i=1}^{4} a_i \log_{10} \left(\frac{R_{rs}(\lambda_{blue})}{R_{rs}(\lambda_{green})} \right) \]

\[K_{d, 490} = K_{bio}(490) + 0.0166 \]

\[R_{rs}(\lambda_{blue}) = R_{rs}(486) \]
VIIRS $K_d(490)$

Diffuse attenuation coefficient at 490 nm (m$^{-1}$)

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5
\[\log_{10}(K_{bio}(490)) = a_0 + \sum_{i=1}^{4} a_i \log_{10} \left(\frac{R_{rs}(\lambda_{blue})}{R_{rs}(\lambda_{green})} \right) \]

\[Kd_{490} = K_{bio}(490) + 0.0166 \]

\[\log_{10}(chlor_{a}) = a_0 + \sum_{i=1}^{4} a_i \log_{10} \left(\frac{R_{rs}(\lambda_{blue})}{R_{rs}(\lambda_{green})} \right)^i \]

\[R_{rs}(\lambda_{blue}) = R_{rs}(443) > R_{rs}(486) \]
The standard K_d(490) and Chl products are 100% co-vary in coastal waters; but ...

\[K_d (490) = \text{Fun} \left(\frac{R_{rs}(490)}{R_{rs}(555)} \right) \]

AOP: sun angle dependent

Nearly independent of sun angle

The two sides do \textbf{not} match in optical attributes.
It is imperative to generate a more consistent, and un-equivocal, ocean color K product in the 21st century

\[K_d = \text{fun}(a, b_b, \theta_w) \]

(What et al 2005)
Normalized diffuse attenuation coefficient \((nK_d)\):

\[nK_d = \frac{K_d}{D_0} \]

\[D_0 = \frac{f}{\cos(\theta_{sw})} + D_0(sky)(1 - f) \]

\(f? \)
(a) $\lambda = 410 \text{ nm} \; \tau_a (550) = 0.1$

(b) $\lambda = 490 \text{ nm} \; \tau_a (550) = 0.1$

(c) $\lambda = 550 \text{ nm} \; \tau_a (550) = 0.1$

(d) $\lambda = 700 \text{ nm} \; \tau_a (550) = 0.1$

(Lin et al 2016)
(Lin et al. 2016)
\[f = m_0 \left(m_1 - e^{-m_2 \frac{\lambda}{\lambda_0}} \right) - \left(m_3 \frac{\lambda}{\lambda_0} + m_4 \right) e^{m_5 \frac{\theta_s}{\theta_{s0}}} \]

\[R^2 = 0.99 \]

MAPE = 0.7%
\[nK_d = \text{fun}(a, b_b) \]
$K_d \& D_0 \rightarrow nK_d$

(Lin et al 2016)
K vs Chl:

(Lin et al 2016)
Remote Sensing nK_d: $R_{rs} \rightarrow a&b_b \rightarrow nK_d$

(Lin et al 2016)
Global sample products from VIIRS:

(Lin et al 2016)
Application of $nK_d(490)$

Water clarity/transparency ...

Angelo Secchi
(1818-1878)
New theoretical relationship for Z_{SD}:

$$Z_{SD} \approx \frac{1}{2.5 K_{d}^{tr}} \ln \left(\frac{|r_T - r_{w}^{tr}|}{0.013} \right)$$

K_{d}^{tr}: attenuation coefficient in the transparent window

(Lee et al 2015)
Verification of the new Secchi disk theory

\[R_{rs} \rightarrow a \& b \rightarrow K_d \]

QAA (2002) Lee et al 2005

\[y = 1.04x + 0.2 \]

(Lee et al 2015)
Global Z_{SD}

A much more straightforward product for water clarity!
Conclusions:

1. Traditional ratio-derived $K_d(490)$ product overlooked its AOP characteristics; →
 a) the empirical $K_d(490)$ product has exactly the same spatial pattern as the Chl product in coastal region, which is not supported by ocean optics theory and observations
 b) could be an “🍎 vs 🍊” comparison between satellite $K_d(490)$ and insitu $K_d(490)$

2. nK_d corrects the AOP feature; →
 It is much more accurate when it is derived following a mechanistic scheme;

3. Optical properties have a spectral dependence, thus nK_d at a single wavelength has limited applications. For representation of water clarity, it is better to use Secchi depth.

It is mid 2016 now, we should have long passed the empiricism-based practices for inversion of optical properties.
Thank you!