I. MODIS Atmosphere Discipline Team: C6 Status

II. MODAWG: MODIS-VIIRS Product Continuity for Cloud Mask, Cloud-Top & Optical Properties Status

S. Platnick et al.

MODIS-VIIRS Science Team Mtg.
Silver Spring, MD
7 June 2016
I. MODIS Atmosphere Discipline Team: C6 Status

- Collection 6 reprocessing reminder:
 - Release in January 2014 (Aqua L2), April 2015 (Aqua L3)
 - May 2015 (Terra L2/L3)

- Browse Imagery
 - GIBS (imminent)
 - L3 Time Series Analysis (new summer 2015)
 - L1B Aggregation: bands 1-7, 26, 20-23, 29-33 (in development)

- Ongoing Data Continuity Challenges
 - Radiometry
 - Safe hold impact
 - NCEP GDAS Continuity

- Next Steps
GIBS Atmosphere C6 Examples
M. Cechini, R. Boller, J. Schmaltz

MOD06: COT

MOD04: DT 3km

MOD06: CER

MOD04: DB
L3 Time Series Analysis

S. Manoharan, N. Amarasinghe, S. Platnick

MODIS-VIIRS STM 2016, Platnick et al.

MOD06 25N-60N Zonal Mean Time Series:
Terra Liquid COT
Land (top)
Ocean (bottom)

http://modis-atmos.gsfc.nasa.gov/IMAGES/08_Timeseries.html

C6

C51

b1 (land) and b2 (ocean) radiometric degradation
L1B Aggregation
S. Manoharan, S. Platnick, R. Levy

MYD02SSH.A2010030.006.-3000--6000.1deg.hdf
Sensor Zenith = -60 to -30 degree
L1B Aggregation
S. Manoharan, S. Platnick, R. Levy

Band2 (641-876 nm) MEAN

MYD02SSH_A2010030.006.0-3000.1deg.hdf
Sensor Zenith = -30 to +30 degree
L1B Aggregation
S. Manoharan, S. Platnick, R. Levy

Band2 (641-876 nm) MEAN

MYD02SSH.A2010030.006.3000-6000.1deg.hdf
Sensor Zenith = +30 to +60 degree

none 0.00 0.50 1.00
Terra Pre-Safe Hold Radiometry Issue & Impact: B29 “Warming”

MOD35 ±25° Zonal Mean Time Series: Terra Cloud Mask Land (top) Ocean (bottom) C6 C51

\[\beta_{C51} = -0.77\%/\text{dec} \quad \beta_{C6} = 0.32\%/\text{dec} \]

\[\beta_{C51} = 11.46\%/\text{dec} \quad \beta_{C6} = 8.85\%/\text{dec} \]

http://modis-atmos.gsfc.nasa.gov/IMAGES/08_Timeseries.html
Terra Pre-Safe Hold Radiometry Issue & Impact: B29 “Warming”

Cause: Cloud mask test over ocean that uses 8.6 µm channel (b29) that’s experienced gradual warming over the last ~5 years, apparently related to crosstalk & not captured by on-board calibration systems.

[Graph showing Aqua–Terra Monthly Cloud Fraction time series (ocean)]
Terra Post-Safe Hold Radiometry Issue & Impact: B29 & B27

MOD35 ±25° Zonal Mean Time Series: Terra Cloud Mask Land (top) Ocean (bottom) C6 C51

fwd production with b27 and b29 test threshold that effectively takes them out of the decision making.
NCEP GDAS
New – Old
example from
2006.103.00z
(change put into
production in
early May 2016)

Sfc. Wind
Speed (m/s)

O₃ (DU)

Precip. Water
(cm)

Tₛfc (K)

RH col. (%)
NCEP GDAS Change - In Production Starting Early May 2016

1km Cloud-Top Pressure Impact Example (2016.103.0500)

corrected (to be processed)
currently in production

~+180 hPa increase in CTP
The Path to GOES-5 (FPIT):
Snow/Sea Ice Cover vs. NISE/GDAS

Cloud Optical Thickness

Cloud Effective Radius

Clouds

Cloud Optical Thickness

Ice Clouds

Cloud Effective Radius
II. MODAWG: MODIS-VIIRS Product Continuity for Cloud Mask, Cloud-Top & Optical Properties

GSFC: Steve Platnick, Kerry Meyer, Gala Wind, Nandana Amarasinghe, Ben Marchant, Chenxi Wang, Thomas Fauchez, Tom Arnold
UW/CIMSS: Steve Ackerman, Rich Frey, Bob Holz
NOAA STAR, UW/CIMSS: Andy Heidinger
Atmosphere SIPS: Bob Holz, Steve Dutcher, Liam Gumley, et al.
II. MODAWG: MODIS-VIIRS Product Continuity for Cloud Mask, Cloud-Top & Optical Properties

▶ Spectral Coverage: Main Challenge in Achieving Data Record Continuity with MODIS
▶ MODIS-VIIRS Cloud Continuity Product Status
▶ Next Steps
MODIS/VIIRS Spectral Differences

Challenge: Direct cloud data record continuity between the SNPP VIIRS and EOS MODIS imagers is problematic because of the absence or relocation of key spectral channels.

- VIIRS missing CO$_2$ and H$_2$O absorption channels present on MODIS (impacts CTP, multilayer detection)
- VIIRS 2.25 µm vs. MODIS 2.13 µm channel (impacts CER)

Approach: Develop common algorithms using common MODIS and VIIRS bands. Alternate algorithm combining VIIRS/CrIS and Aqua MODIS/AIRS to supplement absent VIIRS IR absorption channels under development.

Algorithms/Products: heritage from combined MODIS and GOES-R Algorithm Working Group (AWG) algorithms, i.e., MODAWG.
MODA WG Algorithm Process Flow (with PI/Co-Is)

VIIRS or MODIS Level-1b Product

MODIS-VIIRS Continuity Cloud Mask (MVCM)
S. Ackerman, R. Holz

AWG Cloud Height Algorithm + IR Phase (ACHA)
A. Heidinger

MOD/MYD06 Optical/ Microphysical Properties (COT, CER, WP) + IR/SWIR Phase
S. Platnick, K. Meyer

Ancillary Data Sources

Level-2 Cloud Products

Algorithm integration, processing and testing support at U. Wisconsin SIPS
MODA WG Status

MODIS-VIIRS Cloud Continuity Product Status

- Cloud Mask (MVCM): completed v1
- Cloud Top (ACHA): oceanic lapse rate assumption more similar to MYD06 C6, added multiple microphysical models, improved CrIS data when VIIRS + CrIS data are processed
- Cloud Optical Thickness (COT), Effective Radius (CER) etc.: new LUTs, updated retrieval phase algorithm
Cloud Mask (MVCM):
VIIRS vs. MODIS Zonal Comparisons (Aug. 2014)

Global MVCM cloud amount

MODIS day: 70 VIIRS day: 66
MODIS night: 69 VIIRS night: 68

R. Frey et al., AGU 2015
Cloud Mask (MVCM): Bias vs. View Zenith Angle

MVCM VIIRS vs. MVCM MODIS Aqua daily regional cloud amounts (0.5° grid, ocean, Jan. 2013)

VIIRS cloud amount < MODIS for amounts ~30-95%. Difference increases with view zenith angle (VZA). => Mainly caused by FOV differences.
Cloud Top (MODAWG ACHA): ACHA MODIS vs. MYD06

Example of MODAWG/ACHA applied to MODIS (left) and compared to MYD06 C6 (right)
MODAWG/ACHA run using the default VIIRS-only channels (8.5, 11, 12 µm)

March 29, 2013 Ascending Node
Cloud Top (MODAWG ACHA): ACHA MODIS vs. MYD06 & CALIOP

CALIPSO/CALIOP Comparisons to Data on Previous Slide
ACHA bias is smaller and correlation slightly higher

March 29, 2013 Ascending and Descending Nodes
Cloud Top (MODAWG ACHA): ACHA MODIS Ice Cloud Time Series vs. MYD06

Mean Tropical Ocean ice cloud height:

- Despite spectral and algorithm differences, ACHA heights similar to MYD06.
 - Strong annual cycle correlation
 - Small/no trends
- ACHA biased high vs. MYD06 as well as CALIOP (not shown).

<table>
<thead>
<tr>
<th>Year</th>
<th>ACHA-MODIS</th>
<th>MYD06</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Monthly variation (thin line)
- 6-month smoothing (thick line)
- Linear fit (dashed line)
Cloud Optical Properties:
Monthly means, Liquid water clouds, 3.7 µm CER & COT retrievals, Feb. 2014

- **MYD08 (MODIS C6)**
- **MODIS MODAWG – MYD08**
- **VIIRS MODAWG – MODIS MODAWG**

MODIS Operational

Algorithm evaluation:
MODIS Operational vs. MODIS MODAWG

Continuity evaluation:
VIIRS MODAWG vs. MODIS MODAWG
Cloud Optical Properties:
Monthly means, Liquid water clouds, 3.7 µm CER & COT retrievals, Feb. 2014

MYD08 (MODIS C6)
MODIS MODAWG – MYD08
VIIRS MODAWG – MODIS MODAWG

MODIS Operational
Algorithm evaluation: MODIS Operational vs. MODIS MODAWG
Continuity evaluation: VIIRS MODAWG vs. MODIS MODAWG

CER
ΔCER
ΔCER

COT
ΔCOT
ΔCOT
Cloud Optical Properties: Granule Example

Close overpass (space and time) between Aqua and SNPP near the Kamchatka Peninsula and surrounding waters.

MODIS False Color (Bands 7, 2, 1)
VIIRS False Color (M11, M7, M5)

Scattering Angle Difference

Sensor Zenith Angle Difference

6 July 2014
Cloud Optical Properties: Granule Example

Close overpass (space and time) between Aqua and SNPP near the Kamchatka Peninsula and surrounding waters.

MODIS False Color (Bands 7, 2, 1)

VIIRS False Color (M11, M7, M5)

Scattering Angle Difference

Sensor Zenith Angle Difference

common view zenith & scattering angle

6 July 2014
COT MODIS vs. VIIRS: Granule Example

MODIS MODAWG (liquid & ice)

VIIRS MODAWG (liquid & ice)

Liquid Retrieval Distributions (common ±1° view/scattering angle)

\[<\text{VIIRS}> = 14.3 \]

\[<\text{MODIS}> = 12.1 \]
Cloud Optical Properties: 0.86 µm Channel Radiometry

Spectral Response Functions

VIIRS ~3-4% more reflective than expected
Cloud Optical Properties: 0.86 µm Channel Radiometry

- VIIRS M7 and MODIS B2: Spectral Response Functions
- VIIRS M7: Observed Slope: 1.06, Expected Slope: 1.02
- MODIS B2: 286207 Liquid Cloud Pixels, 345519 Ice Cloud Pixels

VIIRS ~3-4% more reflective than expected

Retrieved VIIRS vs MODIS COT

MODIS COT w/3% increase in reflectance vs. baseline MODIS COT

MODIS-VIIRS STM 2016. Platnick et al.
Cloud Optical Properties:
Monthly means, Liquid water clouds, 3.7 μm CER & COT retrievals, Feb. 2014

Algorithm evaluation:
MODIS Operational vs. MODIS MODAWG

Continuity evaluation:
VIIRS MODAWG vs. MODIS MODAWG

likely inter-cal. bias component
Next Steps …

▶ Calibration: shortwave channel calibration assessment [cloud mask, optical properties], adjustment and SIPS reprocessing
▶ Pixel FOV aggregation sensitivity study: approximately aggregate VIIRS to MODIS? [cloud mask]
▶ Understanding impact of 2 µm window channel placement [optical properties, retrieval phase] and use of other SWIR/MWIR retrievals for continuity.
▶ Incorporation of CrIS into VIIRS to compensate for missing IR absorption channels (vs. combined AIRS/MODIS algorithm)