Testing the Dynamic Habitat Indices from MODIS for biodiversity and conservation

Volker C. Radeloff, University of Wisconsin-Madison
M. Hobi, M. Dubinin, N. Suttidate, E. Razenkova

NASA MODIS Science Team Meeting, 6/9/2016
Outline

I. Background: the Dynamic Habitat Indices

II. Datasets: Composite and annual DHIs

III. Case studies: DHIs and biodiversity
The Dynamic Habitat Indices

• Understanding biodiversity patterns is a BIG scientific question
The Dynamic Habitat Indices

- Understanding biodiversity patterns is a BIG scientific question

- Biodiversity loss is a major challenge for society

BBC NEWS

Front Page
World
UK
UK Politics
Business
Sci/Tech
Health
Education
Entertainment
Talking Point
In Depth
AudioVideo

Tuesday, 21 May, 2002, 12:48 GMT 14:48 UK
Quarter of mammals "face extinction"

Siberian tigers may vanish within three decades
By Corinne Podger
BBC science correspondent

Almost a quarter of the world’s mammals face extinction within 30 years, according to a United Nations report on the state of the global environment.
The Dynamic Habitat Indices

• Biodiversity theory predicts high species richness where:
 – Available energy is high
 – Minimum energy is high
 – Variability in energy is low
The Dynamic Habitat Indices

• Plant productivity is a proxy for the energy available for biotic communities
• The DHIs summarize three key attributes of annual productivity
 – Cumulative
 – Minimum
 – Variability (CV)
The Dynamic Habitat Indices

FPAR – Cumulative
The Dynamic Habitat Indices

FPAR – Minimum
The Dynamic Habitat Indices
The Dynamic Habitat Indices

FPAR DHIs

Variability, Cumulative, and Minimum in RGB
Outline

I. Background: the Dynamic Habitat Indices

II. Datasets: Composite and annual DHIs

III. Case studies: DHIs and biodiversity
Datasets

• MODIS Composite DHIs for 2003-2014
 – Why: MODIS vegetation data have some noise and phenology varies among years
 – The median of all observations for a date
 – Only good MODIS QA flags
 – No-data as functional zeros
 • Northern Latitudes
 • Snow and deserts
Datasets

FPAR July 2002
Datasets

FPAR January 2002
Datasets

<table>
<thead>
<tr>
<th>Index</th>
<th>Product</th>
<th>Platform</th>
<th>Temporal resolution</th>
<th>Spatial resolution</th>
<th>Composite DHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDVI</td>
<td>MOD13A2</td>
<td>Terra</td>
<td>16-day</td>
<td>1000 m</td>
<td>Done</td>
</tr>
<tr>
<td>NDVI</td>
<td>MOD13A1</td>
<td>Terra</td>
<td>16-day</td>
<td>500 m</td>
<td>In progress</td>
</tr>
<tr>
<td>EVI</td>
<td>MOD13A2</td>
<td>Terra</td>
<td>16-day</td>
<td>1000 m</td>
<td>Done</td>
</tr>
<tr>
<td>EVI</td>
<td>MOD13A1</td>
<td>Terra</td>
<td>16-day</td>
<td>500 m</td>
<td>In progress</td>
</tr>
<tr>
<td>FPAR</td>
<td>MCD15A2</td>
<td>Terra/Aqua</td>
<td>8-day</td>
<td>1000 m</td>
<td>Done</td>
</tr>
<tr>
<td>FPAR</td>
<td>MCD15A3</td>
<td>Terra/Aqua</td>
<td>4-day</td>
<td>1000 m</td>
<td>Done</td>
</tr>
<tr>
<td>LAI</td>
<td>MCD15A2</td>
<td>Terra/Aqua</td>
<td>8-day</td>
<td>1000 m</td>
<td>Done</td>
</tr>
<tr>
<td>LAI</td>
<td>MCD15A3</td>
<td>Terra/Aqua</td>
<td>4-day</td>
<td>1000 m</td>
<td>Done</td>
</tr>
<tr>
<td>GPP</td>
<td>MOD17A2</td>
<td>Terra</td>
<td>8-day</td>
<td>1000 m</td>
<td>Done</td>
</tr>
</tbody>
</table>
Datasets

Composite EVI DHIs
Datasets

Composite LAI DHIs
Datasets
Datasets
Datasets

• Annual DHIs
 – Why: One person’s noise is another’s data
 – Smoothing annual phenology
 • Iterative median
 • Savitzky-Golay
Datasets

<table>
<thead>
<tr>
<th>Index</th>
<th>Product</th>
<th>Platform</th>
<th>Temporal resolution</th>
<th>Spatial resolution</th>
<th>DHIs yearly</th>
<th>DHIs smoothed</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDVI</td>
<td>MOD13A2</td>
<td>Terra</td>
<td>16-day</td>
<td>1000 m</td>
<td>Done</td>
<td>I.P.</td>
</tr>
<tr>
<td>EVI</td>
<td>MOD13A2</td>
<td>Terra</td>
<td>16-day</td>
<td>1000 m</td>
<td>I.P.</td>
<td>I.P.</td>
</tr>
<tr>
<td>FPAR</td>
<td>MCD15A2</td>
<td>Terra/Aqua</td>
<td>8-day</td>
<td>1000 m</td>
<td>Done</td>
<td>Done</td>
</tr>
<tr>
<td>FPAR</td>
<td>MCD15A3</td>
<td>Terra/Aqua</td>
<td>4-day</td>
<td>1000 m</td>
<td>Done</td>
<td>N.A.</td>
</tr>
<tr>
<td>LAI</td>
<td>MCD15A2</td>
<td>Terra/Aqua</td>
<td>8-day</td>
<td>1000 m</td>
<td>Done</td>
<td>I.P.</td>
</tr>
<tr>
<td>LAI</td>
<td>MCD15A3</td>
<td>Terra/Aqua</td>
<td>4-day</td>
<td>1000 m</td>
<td>Done</td>
<td>N.A.</td>
</tr>
<tr>
<td>GPP</td>
<td>MOD17A2</td>
<td>Terra</td>
<td>8-day</td>
<td>1000 m</td>
<td>Done</td>
<td>I.P.</td>
</tr>
</tbody>
</table>
Datasets

FPAR DHIs 2003
Datasets

FPAR DHIs 2012
Outline

I. Background: the Dynamic Habitat Indices

II. Datasets: Composite and annual DHIs

III. Case studies: DHIs and biodiversity
DHIs and global biodiversity

Composite FPAR DHIs
DHIs and global biodiversity

Amphibians
DHIs and global biodiversity

Mammals
DHIs and global biodiversity

Birds
DHIs and global biodiversity

<table>
<thead>
<tr>
<th></th>
<th>DHI-Cumulative</th>
<th>DHI-Minimum</th>
<th>DHI-Variability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibians</td>
<td>0.68</td>
<td>0.70</td>
<td>-0.51</td>
</tr>
<tr>
<td>Birds</td>
<td>0.70</td>
<td>0.71</td>
<td>-0.68</td>
</tr>
<tr>
<td>Mammals</td>
<td>0.70</td>
<td>0.71</td>
<td>-0.58</td>
</tr>
</tbody>
</table>

Pearson’s correlation coefficients (r)
DHIs and global biodiversity
DHIs and global biodiversity

Composite FPAR DHIs
DHIs and global biodiversity

Composite FPAR DHIs
Composite FPAR DHIs
Composite FPAR DHIs
Thailand – bird species richness
Thailand – bird species richness

$R^2 = 0.63$
Thailand – bird species richness
Thailand – Bird habitat

Texture of FPAR DHI-1 (cumulative)
Thailand – Bird habitat

Anorrhinus tickelli

Habitat composition model

Habitat + texture model
Outline

I. Background: the Dynamic Habitat Indices

II. Datasets: Composite and annual DHIs

III. Case studies: DHIs and biodiversity
Conclusions

I. Background

– The DHIs are based on biodiversity theory

– Three aspects of productivity that are key for biodiversity
Conclusions

II. Datasets: largely completed
 – Composite DHIs
 – Annual DHIs
 – Next: online data viewing and downloading
Conclusions

III. DHIs and biodiversity

– All three DHIs predict global species richness of amphibians, mammals, and birds
– For birds in Thailand, cumulative DHI mattered most
– Complementary to other predictors
– More in progress…
Thank you!
Thailand – DHI-1 texture
Thailand – Bird habitat