Assessment of Uncertainties in the C6.1 MODIS Cloud-Gap Filled Snow Products

Dorothy K Hall1,2, George A. Riggs1,2, Nicole E. DiGirolamo1,2 and Miguel Román4

1Earth System Science Interdisciplinary Center / University of Maryland, College Park, MD 20740
2Cryospheric Sciences Lab / NASA Goddard Space Flight Center, Greenbelt, MD 20771
3NASA Langley, MD 20302
4Tropical Information Systems Lab / NASA Goddard Space Flight Center, Greenbelt, MD 20771

Reprocessing of the complete data record, Collection 6.1 (C6.1), will result in improvements in the MODIS cryosphere product suite. To address the need for a cloud-reduced or cloud-free daily snow product, there will be new products in C6.1 -- MOD10A1F (Terra) and MYD10A1F (Aqua) -- which are daily, 500-m resolution cloud-gap filled (CGF) snow-cover maps. Associated with the CGF maps is a cloud-persistence map showing the age of the snow (or other) observation in each pixel. Work is ongoing to evaluate and document uncertainties in the CGF snow-cover products. Results show that the CGF maps do an excellent job of capturing snow-cover build-up and depletion, especially in areas with cloud cover that is not continuous. The uncertainties in persistently-cloudy areas are currently being investigated. Comparisons between the Terra and Aqua CGF snow maps reveal differences that are related to differences in cloud masking, with the Terra snow maps being superior as validated in some areas in the western U.S. using NOAA meteorological-station data. The CGF data record will be extended through the Visible Infrared Imaging Radiometer Suite (VIIRS) era by creating a 500-m resolution Environmental Science Data Record (ESDR) of snow-cover extent using MODIS Terra and VIIRS snow maps.

MOD10A1F daily snow maps provide clear views of the surface

Absolute validation of MODIS CGF snow maps is often possible using NOAA meteorological station data

Comparison with other snow products, though useful, does not provide absolute validation because all satellite-derived snow maps have uncertainties

Figure 1. Examples of MOD01A1 and MOD10A1F snow maps in the western U.S. Top row: MOD10A1 snow maps with extensive cloud cover on 14 & 15 April 2012. Bottom row: MOD10A1F ‘cloud-free’ CGF maps corresponding to the MOD01A1 maps. In the top row, non-snow-covered land is green. Regions of interest (ROIs) containing the Sierra Nevada Mts, H.Carf. and Nevada (109,157 km²) and the Wind River Range in WY. (22,172 km²) are outlined in red.

Cloud persistence is tracked for each pixel

Figure 2. Left - Cloud-gap filled (CGF) MOD10A1F maps for 19 March 2012. Right - Corresponding cloud-persistence count (CPC) map from the QA data layer, applied to only the snow cover. Each CGF map has a CPC map so that a user may determine the age of the snow observation for each pixel (Hall et al., 2010b, 2010a; Riggs et al., 2018).

Are both Terra and Aqua MODIS snow maps equally useful for development of an Environmental Science Data Record (ESDR)?

Figure 4. Snow depth (cm) from 15 April 2012 for the western U.S. Source: NOAA NWS: https://gis.nws.noaa.gov/maps/uvst/uvstwetlanddata

Comparison with other snow products, though useful, does not provide absolute validation because all satellite-derived snow maps have uncertainties

Figure 5. Note the shape of the ‘cloud’ feature on this 25 March 2012 MOD10A1 snow map (right) in the red (inset) and the yellow (inset) right snow maps (see red arrow). The shape is similar to a snow feature shown in the NOOA IMS 4 km single map (lower left). To investigate this further, the MOD01A1 cloud mask was re-oriented (Riggs et al., 2010b) revealing a feature that appears to be snow and not cloud (not shown). The determination that this is a snow feature was further confirmed by studying other satellite data and NOAA station data.

References

Figure 6. Top row - Time series plots of percent snow cover is a 22,172 km² (see ROI that includes the Wind River Range, Wyoming) in Figure 3 and a 109,157 km² (see ROI that includes the Sierra Nevada Mts., in Figure 1) using MODIS Terra and Aqua CGF snow cover maps, starting from 1 February through 30 April 2012 (OY 32 – 121). Bottom row - Difference in percent cloud cover (pixel-by-pixel) for Terra and Aqua MODIS snow maps, respectively, for the Wind River Range and the Sierra Nevada Mountains, corresponding to the top panels. ‘No-cloud’ pixels were identified (not shown above). Aqua generally shows more cloud cover than does Terra. These are more ‘decisive’ peaks on the Aqua MODIS snow map, most likely due to the reality of the Aqua MODIS cloud mask. For large areas of cloud cover as ‘certain cloud’, this “shoaling” relates to the non-functional Band 6 detectors in the Aqua MODIS (see Gao et al., 2012 and Riggs et al., 2018 for further information). There are also some differences in the Terra and Aqua snow maps because cloud cover can be different due to the different overpass times. But the main difference is the Terra and Aqua snow maps is due to the need to use Band 7 of the Aqua cloud mask because of non-functioning detectors in Band 6 on the Aqua satellite.

MODIS CGF snow maps capture snow-cover patterns in areas with varying amounts of cloud cover

Figure 7. While both the ROI (including the Wind River Range, Wyoming) (left) box Fig 1 for location of ROI) and the ROI that includes the Cataldi Mts., NY (red box on right, right) have abundant winter snow cover, the Northwestern U.S. has more persistent cloud cover. The MODIS CGF is able to capture the pattern of snow-cover accumulation and depletion, especially in the Wind River Range ROI. The more-persistently cloudy northeastern U.S. ROI, sourced from some snowmelt is missed due to persistent cloud cover that perseveres well on the ground from being mapped, as shown on the right when the Terra CGF maps are compared with the NOAA National Ice Center’s 4-km ROI snow maps that provide daily, cloud-free snow cover.