Integrating Multi-Platform Satellite Soil Moisture and Evapotranspiration Retrievals to Constrain Water and Energy Balance Coupling

Wade T. Crow, Fangni Lei, Martha C. Anderson
Hydrology and Remote Sensing Laboratory, USDA ARS

Thomas R. H. Holmes
Hydrological Sciences Laboratory, NASA GSFC

Christopher Hain
Earth Science Office, NASA MSFC

October 15-19, 2018
MODIS/VIIRS Science Team Meeting
MODIS Land Science Analysis
Motivation – Water and Energy Balance Coupling

Land-Atmosphere Interaction

- Outgoing Radiation
- Net Radiation
- Precipitation
- Latent Heat Flux
- Sensible Heat Flux
- Evaporation
- interception
- Infiltration

Physical Model

- Cross Validation
- In-situ
- Remote Sensing

Soil Moisture

Evapotranspiration

Energy Balance

Soil Heat Flux

Water Balance
Motivation – Multi-Platform Remote Sensing

- Meteorological Information
 - Solar insolation
 - Precipitation
 - Atmospheric temperature
 - Wind speed
 - Humidity
 ...

- Land Surface Characteristics
 - Soil moisture
 - Land surface temperature
 - Leaf area index
 - Landcover type
 ...

Multi-platform satellite soil moisture and evapotranspiration products
Here comes the question...

Are current land surface models accurate in characterizing the relation between soil moisture and evapotranspiration?

Key challenge:

Coupling estimates obtained from (relatively noisy) satellite retrievals are biased.

Our approach:

Obtain unbiased, observation-based global estimates of true coupling by integrating multi-platform soil moisture and evapotranspiration retrievals
Multi-Platform Land Products – Evapotranspiration

Atmosphere-Land Exchange Inverse

Energy balance:

\[ET = (R_{NET} - G) - H \]

Blending height

ALEXI
(Atmosphere-Land Exchange Inverse model)

DATA FUSION: daily ET at field scale

[Anderson et al., 2011]
Multi-Platform Land Products – Evapotranspiration

- Global ALEXI ET product from MODIS LST

Radiation Fluxes
CFS-R CFSv2 [0.5°]

Lapse Rate Profile
CFS-R [0.5°]

Wind Speed
CFS-R [0.5°]

Landcover Type
UMD [0.01°]

Albedo
MODIS MOD43C [0.05°]

Land Surface Temperature
MODIS MYD11C1 [0.05°]

Leaf Area Index
MODIS MOD15A [0.01°]
Multi-Platform Land Products – Evapotranspiration

- MW-LST retrievals from Ka-band satellite sensors

[Holmes et al., 2015]
Cumulative - Clear Sky - Evapotranspiration (mm)
2004

[Holmes et al., 2018]
Multi-Platform Land Products – Soil Moisture

ESA CCI merged passive microwave soil moisture

MetOp-A/B ASCAT active microwave soil moisture

[Dorigo et al., 2017]
Multi-Platform Land Products – Soil Moisture

ESA CCI PASSIVE SM (2010/07/01)

Passive Microwave Soil Moisture \([m^3/m^3]\)

ESA CCI ACTIVE SM (2010/07/01)

Active Microwave Percent of Saturation [%]
A Unified Approach to Integrate Products

Triple collocation-based coupling strength metric

Soil Moisture Evapotranspiration

[Crow et al., 2015]
Discrepancy among Land Surface Models

Global Land Data Assimilation System

- Noah v3.3
- Community Land Model (CLM) v2.0
- Variable Infiltration Capacity (VIC)
- Catchment Land Surface Model (CLSM) F2.5

\[R^2[SM_{LSM}ET_{LSM}] \]
Direct coupling from multi-platform and LSMs

Remote Sensing

$R^2 [SM_{RS} ET_{RS}]$

GLDAS LSMs

$R^2 [SM_{LSM} ET_{LSM}]$
Integrated multi-platform based coupling

Triple Collocation

$R^2[SM_{TC}ET_{TC}]$

GLDAS LSMs

$R^2[SM_{LSM}ET_{LSM}]$
Benchmarking Land Surface Models

Biases in LSMs with regard to triple collocation-based estimates

Maps showing biases in Noah, VIC, CLM, and CLSM models compared to triple collocation-based estimates.

Bar charts showing percentages of pixels for different regions (North America, South America, Europe, Africa, Asia, Australasia) for each model with indications of under-coupling, differences within 2-sigma, and over-coupling.
Benchmarking Land Surface Models

The diagram illustrates the mean of SM/LH coupling strength (Spearman R^2) across various Koppen-Geiger climate zones. The x-axis represents different climate zones, while the y-axis shows the mean of SM/LH coupling strength. The diagram includes several lines representing different models:

- $R^2[SM_{LSM}, ET_{LSM}]$ (Noah)
- $R^2[SM_{LSM}, ET_{LSM}]$ (CLM)
- $R^2[SM_{LSM}, ET_{LSM}]$ (VIC)
- $R^2[SM_{LSM}, ET_{LSM}]$ (CLSM)

The graph also indicates the number of land grid cells on the right y-axis. The climate zones are categorized as Hot, Humid, and Dry, with corresponding color coding for visual differentiation.
Here come the answers...

- Random errors in remote sensing products impede the direct comparison
- Large discrepancies exist among various land surface models
- Land surface models generally overestimate the soil moisture/evapotranspiration coupling strength along transitional climate regimes

Published on Water Resources Research
On-going Development

ALEXI

TIR-LST

VIIRS

MW-LST

FY-3B

CMIP5/6 LS3MIP

from offline to coupled

Land Surface Model

Noah-MP (modular)
Thank you!
Remote Sensing

$R^2[SM_{RS}ET_{RS}]$

GLDAS LSMs

$R^2[SM_{LSM}ET_{LSM}]$
Triple Collocation

$R^2[SM_{TC}ET_{TC}]$

GLDAS LSMs

$R^2[SM_{LSM}ET_{LSM}]$