Radiometric Calibration and Surface Reflectance Validation of MODIS and VIIRS

Jeffrey Czapla-Myers and Nikolaus Anderson

Remote Sensing Group
Wyant College of Optical Sciences
University of Arizona

MODIS/VIIRS Science Team and Cal/Val Meeting
University of Maryland
College Park, MD, USA
18–21 Nov 2019
Topics

- Radiometric Calibration Test Site (RadCaTS)
- Current status of RadCaTS
- Radiometric calibration and surface reflectance validation results
- Summary and future work
Introduction to RadCaTS

• Developed as an automated ground-based vicarious calibration system

• Originally designed to supplement reflectance-based approach
 • Portable spectroradiometers, reference panels (surface reflectance)
 • Solar radiometers, ancillary weather equipment (atmospheric measurements)
 • Requirement: we have to be on site to deploy instruments

• RadCaTS uses a combination of custom and commercially-available instruments
 • GVR: ground-viewing radiometer (designed and built at U of Arizona)
 • Cimel CE318-T solar lunar photometer (AERONET)
 • Weather station
 • Wireless base station, connected to U of Arizona via satellite uplink
Current Status of RadCaTS

• Primary method for U of Arizona in situ data collection

• Instruments are combination of custom and commercially-available
 • GVR: ground-viewing radiometer (designed and built at U of Arizona)
 • Cimel CE318-T solar lunar photometer (AERONET)
 • Weather station
 • Wireless base station, connected to U of Arizona via satellite uplink
Field Radiometer for On-Site Calibration

- Calibration Test Site SI-Traceable Transfer Radiometer (CaTSSITTR)
- Same seven VNIR bands as RadCaTS ground-viewing radiometer
 - 400, 450, 500, 550, 650, 850, 1000 nm
- One-person operation, wireless data logging
- Temperature-controlled focal plane (35 °C)
- Travelling transfer radiometer for test site intercomparison and uncertainty analysis (e.g. RadCalNet)
Support Instrumentation

- Commercial UAS for spatial uniformity analysis (SPIE 2017)
Other Instrumentation

- Web camera (Campbell Scientific CCFC)
 - Installed in May 2018, views south
 - Images collected at 09:00–15:00 local standard time (17:00–23:00 UTC)
 - Every 30 minutes
 - Images are now available on RadCalNet data portal

- Images currently stored on site with option to download to U of Arizona

- Dust storm (29 Jul 2018)
- Clear (11 Jun 2019)
- Snow (17 Feb 2019)
- Rain (22 May 2019)
CEOS WGCV Radiometric Calibration Network (RadCalNet)

- Online data portal went live in Jul 2018: www.radcalnet.org
 - TOA reflectance from 09:00–15:00 local standard time
 - 400 nm to 2500 nm, $\Delta \lambda = 10$ nm
 - Surface reflectance and atmospheric data are also available

- RadCalNet forum: forum.radcalnet.org (announcements, FAQs, documentation, etc.)
Surface Reflectance Determination at RadCaTS

- For a given time of interest:
 - Determine surface reflectance in each of GVR’s 8 spectral bands
 - Determine the average for each of the 8 bands
 - Convert the multispectral results to hyperspectral by fitting to library of data collected from ~2000–present using portable spectroradiometer (e.g. ASD)
RadCaTS Surface Reflectance QA

• ‘Good–Bad Day’ QA Criterion (old method)
 • If 0.9 < Angstrom exponent < 1.5: good day
 • Else: bad day
 • Problem: too many good days were excluded

• New criteria (current method)
 • Developed for use with Railroad Valley results for RadCalNet
 • If \(\text{AOD}_{550\ nm} < 0.16 \) and \(\text{BRF}_{\text{GVRs}} \) is within \(\pm 1\sigma \) of the 2014–2019 average: good day
 • Else: bad day

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RVUS</td>
<td>145</td>
<td>83</td>
<td>133</td>
<td>114</td>
<td>88</td>
<td>149</td>
<td>18</td>
<td>730</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RVUS</td>
<td>193</td>
<td>234</td>
<td>222</td>
<td>221</td>
<td>262</td>
<td>230</td>
<td>65</td>
<td>1427</td>
</tr>
</tbody>
</table>
MODIS and VIIRS Cal/Val Imagery

Source
• LAADS DAAC

Radiometric Calibration

Surface Reflectance Validation
• Terra & Aqua MODIS: Collection 6 (2013–2019)
• NOAA-20 VIIRS: no imagery
MODIS Results
Current MODIS Radiometric Calibration Results

- 2013–2019
- **TMODIS**: N=118, **AMODIS**: N=84
 - Double ratio to remove RadCaTS
 - **MODIS Bands 1–7**
 - **Double ratio**: \(\frac{\text{TMODIS}}{\text{RadCaTS}} / \frac{\text{AMODIS}}{\text{RadCaTS}} = \frac{\text{TMODIS}}{\text{AMODIS}} \)
Radiometric Calibration Results (Temporal Example)

Terra MODIS

Band 1 (645 nm)

Band 4 (553 nm)

Aqua MODIS

Band 1 (646 nm)

Band 4 (553 nm)
Current MODIS Surface Reflectance Validation Results

- 2013–2019
- **TMODIS**: N=118, **AMODIS**: N=84
 - Double difference to remove RadCaTS

MODIS Bands 1–7
- Double difference: \((\text{TMODIS}−\text{RadCaTS})−(\text{AMODIS}−\text{RadCaTS}) = \text{TMODIS}−\text{AMODIS}\)
Surface Reflectance Validation Results (Temporal Example)

Terra MODIS

Terra MODIS Band 1 (645 nm)
Surface Reflectance Validation (2013–2019)

```
Reflectance  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.10
```

Aqua MODIS

Aqua MODIS Band 1 (645 nm)
Surface Reflectance Validation (2013–2019)

```
Reflectance  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.10
```

Terra MODIS

Terra MODIS Band 4 (553 nm)
Surface Reflectance Validation (2013–2019)

```
Reflectance  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.10
```

Aqua MODIS

Aqua MODIS Band 4 (553 nm)
Surface Reflectance Validation (2013–2019)

```
Reflectance  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.10
```
VIIRS Results
Current SNPP and NOAA-20 VIIRS Radiometric Calibration Results

- SNPP VIIRS: N=70, NOAA-20 VIIRS: N=18

SNPP VIIRS

NOAA-20 VIIRS

Double Ratio to Remove RadCaTS

- VIIRS Bands: I1–I3, M1–M5, M7, M8, M10, M11
- Double ratio: \(\frac{\text{SNPP/RadCaTS}}{\text{N20/RadCaTS}} = \text{SNPP/N20} \)
Radiometric Calibration Results (Temporal Example)

SNPP VIIRS

Band I1 (638 nm)

NOAA-20 VIIRS

Band I1 (638 nm)

Band M4 (552 nm)
Current SNPP VIIRS Surface Reflectance Validation Results

- 2013–2019
- N=70

SNPP VIIRS Surface Reflectance Validation (2013–2019)

- **Band I1 (638 nm)**
- **Band M4 (552 nm)**

Temporal Examples

- SNPP VIIRS Band I1 (638 nm)
- SNPP VIIRS Band M4 (552 nm)
Recap
Summary of All Radiometric Calibration Results

VNIR

SWIR
Summary of All Surface Reflectance Validation Results

VNIR

Surface Reflectance Validation (2013–2019)

SWIR

Surface Reflectance Validation (2013–2019)
Summary

- RadCaTS continues to be operational, with daily data collection
- Surface reflectance results are uploaded to NASA GSFC for further processing to TOA reflectance for RadCalNet
- One new ground-viewing radiometer will be deployed in 2020
 - 5 nadir viewing configuration
 - 1 GOES-East
 - 1 GOES-West
- BRDF correction will continue to be developed and integrated in processing code
- Headwall UAS will be deployed at RadCaTS for spatial and BRDF studies
- GVR head translation stage continuing to be developed
- Analysis will be updated to include NOAA-20 VIIRS surface reflectance when available
Thanks!

• The authors would like to thank NASA for funding this work (NASA Research Grant 80NSSC18K0614), and AERONET for processing and distributing the Cimel data.

• We would also like to thank the Bureau of Land Management (BLM), Tonopah, Nevada office, for assistance and access to Railroad Valley.