# SNPP VIIRS Lunar Images and Irradiances — a Correlation Study of Moon Image Orientation

Thomas C. Stone U. S. Geological Survey, Flagstaff, AZ

MODIS/VIIRS Calibration Workshop College Park, MD 18 November 2019

- when the Moon is observable, typically October through June
- as the spacecraft traverses its orbit, the Moon passes through the field of view
- roll angle specified to center the Moon disk in Earth view:



SNPP VIIRS image d20170604\_t1934579, band M7, scan 12

centering avoids stray light, seen by stretching the display level:



#### **Lunar Calibration**

USGS lunar calibration works with lunar irradiances, comparing sensor measurements against reference values generated by the ROLO model.

- Reference irradiances are computed for the Sun-Moon-observer geometry (phase, librations, distances) corresponding to the instrument's Moon observations, transformed to the sensor's band wavelengths
- <u>Irradiance measurements</u> from Moon images involves spatial integration of pixels on the lunar disk:

$$m{E}_{ ext{meas}} = rac{\Omega_{ ext{p}}}{\eta} \, egin{smallmatrix} N \ L_i \end{bmatrix}$$

 $\Omega_{
m p}={
m pixel~IFOV}~{
m (solid~angle)} \ \eta={
m oversampling~factor} \ L_i={
m pixel~radiance} \ N=\# {
m of~pixels~on~Moon}$ 

The accuracy of lunar irradiance measurements from images depends on careful evaluation of:

- net radiance: subtraction of the dark background
- actual detector spatial response (IFOV, different from GSD)
- oversampling of the Moon disk (different from slew/sampling)



#### **Lunar Calibration**

Typical usage: tracking sensor response changes on orbit

• time series of measurement/model ratios reveal sensor response trends





# VIIRS Lunar Image Analysis at USGS

Moon image processing to irradiance, independent of VCST and OBPG

- RDRs obtained from NOAA CLASS
- SDR software system installed on USGS compute cluster: ADL 4.2.8
  - code modifications to remove time-dependent calibration components; all granules processed identically
- VIIRS moon image spatial integration routines developed at USGS
  - detector dark level evaluation from deep space regions around the Moon disk
  - radiance conversion using SDR base calibration factors, extracted from SDR files
  - pixel solid angle derived from Horizontal Sampling Interval (from geolocation ATBD)
- temporal response trends corrected using daily-average SD f-factors for days of Moon observations (thanks to VCST)

<u>USGS results</u>: time series of measurement/ROLO ratios, not normalized



#### USGS Results for VIIRS Lunar Calibration

Lunar irradiance ratios (VIIRS/ROLO)

— de-trended —

#### Notable features:

- discrepancies (offsets)7-16% for M1 to M6
- band-correlated oscillation pattern



- lines show linear fits to time series
  - slopes reveal residual temporal drifts (small)



#### USGS Results for VIIRS Lunar Calibration

Lunar irradiance ratios (VIIRS/ROLO)

— de-trended —

#### Notable features:

- discrepancies (offsets)9-14% for M7 to M10~26% for M11
- band-correlated oscillation pattern



- lines show linear fits to time series
  - slopes reveal residual temporal drifts (small)



### Investigating the Oscillation Patterns

The cross-band correlation suggests an origin in the ROLO lunar model.

- for a given sensor band, the model results are governed by only the phase angle and lunar librations
  - the only significant correlations were found with the observer (sensor) lunar librations

# Analysis approach: study residuals to the linear trend fits (offset for clarity)





# Investigating the Oscillation Patterns

Developed correction to the ROLO model irradiances — a combined linear function of observer libration longitude and latitude:

$$oldsymbol{E}_{ ext{ref}}' = oldsymbol{E}_{ ext{ref}} \, \left( 1 + c_0 \, \phi + c_1 \, heta 
ight)$$

 $\phi = \text{sub-observer longitude}$ 

 $\theta = \text{sub-observer latitude}$ 

- corrections scaled to irradiance residuals
- good correlation for years 2013-2015, then breaks down
- not a valid approach



 $\star$ A correction to the ROLO model must specify a property of the Moon, and thus be valid for all observations by all instruments

# Investigating VIIRS Image Integration to Irradiance

VIIRS Moon images are presumed to be neither oversampled nor undersampled.

- if oversampling=1.0 does not strictly hold, then the irradiance measurements should show a dependence on the Moon image orientation in relation to the along-scan direction
  - due to the distribution of radiance across consecutive frames

Image orientations were determined for VIIRS I-band images by selecting high-contrast pixels that define the lunar bright limb.



# Investigating VIIRS Image Integration to Irradiance

VIIRS Moon images are presumed to be neither oversampled nor undersampled.

- if oversampling=1.0 does not strictly hold, then the irradiance measurements should show a dependence on the Moon image orientation in relation to the along-scan direction
  - due to the distribution of radiance across consecutive frames

Image orientations were determined for VIIRS I-band images by selecting high-contrast pixels that define the lunar bright limb.



29 November 2017 236.6° ccw from +X



25 May 2018 181.9° ccw from +X





### Study Results and Conclusions

- Examining the complete series of VIIRS Moon observations shows the image orientations have an annual repeat cycle
  - the oscillations seen in the lunar measurement/model residuals have a different periodicity, therefore this effect cannot be attributed to image orientation
  - this negative result does not rule out potential along-scan oversampling errors
  - the cause of the oscillations has not conclusively been determined
- Other aspects of VIIRS lunar image spatial integration to examine:
  - motion of the Moon relative to the line of sight during scans
  - possible effects of pixel aggregation
- The oscillation effect is small, ~1% or less, but coupled across VIIRS bands
  - thus given consideration in the ROLO model redevelopment effort



# Thank You!

