

## Is the world burning less?

Disentangling decadal trends, inter-annual fire variability and product uncertainties, through harmonization of the NASA MODIS and VIIRS fire product record



Luigi Boschetti (UI), David Roy (MSU) and Louis Giglio (UMD)

#### Rationale

The combined MODIS / VIIRS burned area time series will provide the first ever global fire record covering the 30 years conventionally required for climate analysis.

Validation with Landsat shows a large bias due to missing small burns. The bias can affect the usefulness of the time series.



## **Project Objectives and Tasks**

- Quantify the discrepancy between active fire counts and burned area detections in the MODIS and VIIRS product record.
- Generate reference L8 / S2 burned area time series at representative locations.
- Derive an unbiased 25-year 0.25° harmonized MODIS/VIIRS time series, with uncertainties, calibrated using the L8/S2 reference burned area
- Detect burned area trends and interannual variability, identify if observed trends are significant relative to inter-annual fire variability and to the uncertainties.



# Is the world burning less?

Disentangling decadal trends, inter-annual fire variability and product uncertainties, through harmonization of the NASA MODIS and VIIRS fire product record



### Proposed milestones (deliverables)

- Year 1: Intercomparison of MODIS/VIIRS burned area and active fire products. Selection of locations for L8/S2 reference data.
- Year 2: <u>Generation of the L8/S2 reference</u> <u>dataset</u>

Define the approach for the AF/BA fusion

Define the approach for the calibration of the 0.25  $^\circ$  harmonized product

Year 3: <u>Generation of the calibrated 0.25°</u> <u>MODIS/VIIRS burned area product</u> (2012-2024) and contingency VIIRS <u>only product (2002-2024)</u> Documentation and distribution



Critical concern: delay in the release of the VIIRS burned area product (L8/S2 reference dataset ideally informed by MODIS and VIIRS)