Investigating the influence of volcanic sulfate aerosol on cloud properties using MODIS data along A-Train tracks.

Jay Mace
Sally Benson, Peter Gombert

Objectives: Quantify the differences in shallow convective cloud properties downstream of subtropical volcanic island using A-Train data when volcanoes are and are not emitting SO₂

Methodology: During A-Train overpasses near volcanic islands, identify back trajectories that pass close to the volcano.

Divide A-Train overpasses into high aerosol optical depth (i.e. active SO₂ release) and low aerosol optical depth...

Finding: In high AOD volcanic plumes:
- Clouds are also deeper and have higher cloud fraction.
- Higher cloud droplet numbers
- Smaller precipitation effective radius.

Density plot of overpasses that pass within 100 km of Kilauea within 24 hours of an A-Train overpass

Mace et al. 2022 (in prep)
Exploring Cloud Droplet Number Variability in the High Latitude Oceans data along A-Train tracks.

Jay Mace
Sally Benson, Peter Gombert, Elizabeth Sterner

Objectives: Use MODS L2 to quantify the statistics of Cloud Droplet Number Concentration (Nd) seasonally in the high latitude Southern Ocean.

Explore processes behind these statistics using A-Train data

Methodology:

Identify non-precipitating low level liquid phase clouds scenes in MODIS L2 data.

A scene is a 1x2 lat/lon region with primarily low non-precipitating liquid clouds

Construct the geographic distribution of high and low Nd cloud scenes in the Summertime Southern Ocean.

Finding: the highly biogenic productivity regions near Antarctica have an anomalously high occurrence of high Nd clouds

Geographic Distribution of High Nd scenes in the summer Southern Ocean

MODIS/VIIRS Atmo. Discipline Virtual Mtg. May 2022