Why Observing the Climate State Matters for Diagnosing
Carbon Dioxide Radiative Forcing
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Introduction Observation-Based Estimate of Radiative Forcing for 4xCO, Concentrations Model Spread from Climate State

The instantaneous radiative forcing (hereafter just “radiative
forcing”) is the initial radiative flux perturbation directly due
to a change in atmospheric composition. All anthropogenic
climate change is a response to the radiative forcing.
When defined at the top-of-atmosphere (TOA), the radiative
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defined for surface flux perturbations, the radiative forcing -~ [ o W/m’
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constrains hydrological cycle changes.
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Often underappreciated, the radiative forcing is sensitive to son B o S e el e gy : o S

the underlying climate state that the radiation propagates EQ Ry
through. Here we explore the implications of that sensitivity |
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Figure 7. LEFT: Clear-sky radiative forcing for various greenhouse gases
computed using radiative kernels vs. offline calculations. Orange points

60S A are additional offline double calls where model-mean water vapor

for radiative forcing for a uniform change in CO, 905 — = ————— ——, — == — | ,
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RIGHT: Scatter of 2xCO2 radiative forcing versus 10hPa climatological
Figure 3. Shortwave (SW) (top) and longwave (LW) (bottom) instantaneous radiative forcing for 4xCO2 temperature. Blue shading is range of observed global-mean

concentrations from pre-industrial levels. Shown for top-of-atmosphere (TOA) and surface (SFC) radiative flux temperatures at 10hPa from a variety of sources (text)
perturbations under all-sky (“All”) and clear-sky (“Clr”) conditions. Global-mean values shown at top-right of each
panel. Computed using RRTMG initialized with cloud information from CloudSat constrained by MODIS and all

: : ... : other state variables from ECMWF reanalysis.
Changes in net atmospheric radiation are comprised of

radiative forcing (F) and multiple climate feedback -3 Cloudsat Cloud Top Presstire Uniquely for CO, radiative forcing, inter-model
responses (A,): o ) , _ _ spread is largely due to differences in base state
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_ o o " LTS PR . distinct spatial pattern dictated by the
The goal of this project is to calculate globally resolved radiative ° N, A climate state’s temperature, water vapor,

forcing for perturbations of CO2 and other greenhouse gases L . R cloud and surface albedo distribution
from realistic, observed climate conditions using a well-vetted SN R e £
radiative transfer model. . ° z CO, Radiative Forcing is Not a Constant
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Importantly, this includes initializing the calculations with clouds 5 o 35 6 % s 7 Figure 6. From Merlis (2015). Schematic

radiative forcing from
greenhouse gases.

Due to its sensitivity to the climate state, as the climate
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observed from satellites. . - - Showgllg) palttercri1 of Cl?z radlzt{ve forcing state changes so does the magnitude of CO, radiative
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Figure 2. Venn diagram showing

;ir?:;oral o relevant unique and shared | 1 (:O2 radiative forcing in the deep ‘(‘:ONCI;USION: Over tlme, CO2 becomes a mlore
characteristics of cloud observations | . tropics more than at higher potent” greenhouse gas. Long-term observations of

from MODIS, AIRS and . ; ' ' '
Gl g oo | | R latitudes. This may act to weaken the climate state are necessary to monitor this effect.
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