Long-term trends in PM_{2.5} pollution in China: Combining MODIS and VIIRS satellites via machine learning Jing Wei & Zhanqing Li

Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA

Introduction

- □ Air pollution has become one of the major environmental risks affecting human health and can raise the risk of death. $PM_{2.5}$ has become the fifth leading lethal risk around the world.
- \Box Currently, PM_{2.5} estimates and predictions were less accurate with overall low accuracies at coarse spatial resolutions due to the limitations of the models themselves and data sources.
- □ More accurate methods especially machine learning that improve the prediction accuracy of $PM_{2.5}$ concentrations are thus needed, and this would make up for the gap in studies on PM_{25} variations across China.
- \square We produce for the first time a high-resolution and high-quality PM_{2.5} dataset for China, reconstructing the period since 2000, and perform the investigation of long-term spatiotemporal PM_{2.5} variations.

Materials and methods

□ Method: We proposed a space-time extremely randomized trees (STET) model by involving the spatiotemporal information into the machine learning model to construct the robust AOD-PM_{2.5} conversion relationship.

- **AOD data:** MODIS MAIAC 1 km (MCD19A2) AOD product and VIIRS Deep Blue 6 km (AERDB) AOD product
- **D** Meteorological data: Boundary layer heights, temperature, relative humidity, precipitation, evaporation, surface pressure, wind speed, and wind direction, were extracted from the ERA5 reanalysis.
- **D** Auxiliary data: CAMS Emission Inventory including aerosol precursors (i.e., NH₃, NO_x, and SO₂), MERRA2 aerosol simulations, NDVI, DEM, and LandScan population distribution, et al.

and spatial prediction ability of daily $PM_{2.5}$ estimates and predictions.

Reference

□ Wei, J., Li, Z.*, et al. Reconstructing 1-km-resolution high-quality PM_{2.5} data records from 2000 to 2018 in China: spatiotemporal variations and policy

implications. Remote Sensing of Environment, 2021, 252, 112136.

□ Wei, J.*, Li, Z.*, et al. Extending the EOS long-term PM_{2.5} data records since 2013 in China: application to the VIIRS Deep Blue aerosol products. *IEEE Transactions on* Geoscience and Remote Sensing, 2022, 60, 4100412.