

SNPP, NOAA20 and 21 VIIRS RSB calibration performance and inter-comparison assessment

VIIRS Characterization Support Team, NASA GSFC (presented by Aisheng Wu)

MODIS and VIIRS Calibration Workshop, College Park, MD, May 1, 2023

VIIRS RSB						
Band	CW	BW				
	(nm)	(nm)				
M1	412	20				
M2	445	18				
M3	488	20				
M4	555	20				
M5	672	20				
M6	746	15				
M7	865	39				
M8	1240	20				
M9	1378	15				
M10	1610	60				
M11	2250	50				
11	640	80				
12	865	39				
13	1610	60				

- Introduction
- Methodology
 - Vicarious approaches (SNO, desert, Dome C and DCC)
 - Data: NASA SLIPS C2 L1B for SNPP and NOAA21
- Results
 - Stability and inter-comparison
- Summary

Pseudo-Invariant Calibration Sites (PICS):

- PICS approaches include desert (Libya 4) and Dome C
- Near-nadir, 16-day repeatable orbits for Libya-4, daily overpasses for Dome C in Antarctic summer.
- Target area of 25 x 25 km. Employ semi-empirical (desert) and empirical (Dome C) BRDF correction. BRDF coefficients derived initial years of on-orbit measurements

DCC approach

• DCC pixels collected over western tropical Pacific. *Mu et al. "Optimization of a Deep Convective Cloud Technique in Evaluating the Long-Term Radiometric Stability of MODIS Reflective Solar Bands", Remote Sensing, vol. 9 (6), issue 535, 2017.*

Impact due to RSR differences: Correction applied based on SBAF derived using historic SCIAMACHY hyperspectral data

Simultaneous Nadir Overpasses (SNO)

- Aqua MODIS used as a transfer radiometer for SNPP, NOAA20/21 intercomparison. TOA reflectance ratio between VIIRS/MODIS from high-latitude SNO (<3 minutes, two-line element), one SNO every 3-4 days
- No BRDF correction applied
- Correction for RSR mismatch based on a scene-averaged SCIAMACHY hyperspectral profile over typical high-latitude
- Larger uncertainties in some SWIR bands (compared to the VIS/NIR bands) likely due to their high sensitivity to atmospheric conditions

Pixel-by-pixel match from SNO on Oct 8, 2019

SBAF between NOAA20 and 21 RSB

Band	N/1	N/1 2	M3	N/A	M5	M7	11	12	M8	M10	13
Danu	IVIT		IVIS	141-	1415	1417	11	12	1410	IVIIO	15
Desert	0.9966	0.9987	0.9995	0.9933	1.0073	0.9957	0.9983	0.999	0.9892	0.9925	0.9947
Snow	0.9974	0.9999	1.0009	1.0018	1.0009	0.9923	1.0001	0.9988	1.0029	N/A**	N/A
Ocean	0.9969	0.9987	1.0033	1.008	0.9901	0.9902	1.0056	0.9959	0.9997	N/A	N/A
Cloud	0.9974	0.9996	1.0011	1.0043	1.0034	0.9954	0.9986	0.999	0.9944	0.9787	0.9763

*The SBAF correction is determined using historic hyperspectral observations from SCIAMACHY, one of ten instruments aboard of ESA's Environmental Satellite, ENVISAT ** Large variations (>3%) in SBAF for different scene types

Reflectance trends over desert site

Reflectance ratio trends (VIIRS/Aqua MODIS)

Reflectance trends over Dome C

JINI I DAJCA DIALI APPIICA LO DOLLI JULIO

SNPP-NOAA20 (black), NOAA20-NOAA21 (red), Results provided in percentage (%)

Band	M1	M2	M3	M4	M5	M7	M8	M9	M10	M11	l1	l2	l3
(μm)	0.41	0.45	0.49	0.56	0.67	0.87	1.24	1.38	1.61	2.25	0.64	0.87	1.61
Libya4	7.5 <mark>1.0</mark>	6.3 <mark>1.6</mark>	4.4 <mark>0.0</mark>	3.3 2.1	4.5 -1.7	2.7 -0.3	2.4 <mark>0.9</mark>		1.8 3.1	1.7 2.3	2.9 -1.1	2.6 - 1.0	3.0 <mark>0.5</mark>
DCC	6.7	5.3	5.6	6.8	5.0	4.8	1.8	0.6	0.3	1.9	4.4	5.4	2.5
	<mark>1.3</mark>	<mark>1.6</mark>	<mark>2.5</mark>	-0.4	- <mark>0.1</mark>	<mark>0.8</mark>	4.3	7.4	<mark>0.4</mark>	5.5	-0.3	<mark>0.4</mark>	-0.5
Dome C	8.3 <mark>2.1</mark>	6.7 2.4	5.0 <mark>0.9</mark>	4.7 <mark>0.1</mark>	5.1 <mark>2.0</mark>	2.4 <mark>0.9</mark>					3.3 <mark>0.9</mark>	2.6 1.2	
Aqua	6.6	5.9	4.3	5.2	4.9	3.2	2.9		3.0	4.6	3.2	3.0	3.9
SNO	<mark>1.2</mark>	1.7	<mark>1.6</mark>	<mark>0.6</mark>	- <mark>0.3</mark>	<mark>0.8</mark>	<mark>0.9</mark>		1.7	<mark>5.1</mark>	<mark>0.9</mark>	<mark>0.8</mark>	1.2

*Results from NOAA21 VIIRS are preliminary based on Libya 4, Dome C and SNO approaches

RSR correction for NOAA21 is based on those from NOAA20 10

Summary

- Assessment of calibration consistency among SNPP, NOAA20 and 21 VIIRS RSB is based on vicarious approaches (SNO, desert, Dome C and DCC)
- While SNPP and NOAA20 have a stability within 2% over the mission, it shows that the NOAA20 reflectances are systematically lower than SNPP by about 4 to 7% for bands M1 to M3 (shortest wavelengths) and 2-4% for the rest bands.
- Initial comparison shows that the NOAA21 VIIRS reflectances are consistent with NOAA20 to within 2% for VIS/NIR. Impacts of the spectral differences based the SBAF analysis indicate they are within 0.5% (VIS/NIR) for most scene types. For SWIR bands, large inconsistent (>5%) results are observed.
- Comparison results indicate that agreement among the different approaches are up to 2.0%, indicating errors due to limitation of each approach.