VIIRS DNB Calibration and Performance

VIIIRS Characterization Support Team (VCST), NASA GSFC (Presented by Junqiang Sun)

> MODIS/VIIRS Calibration Workshop (Presented by Junqiang Sun)

> > May 1, 2023

1

VIIRS DNB

□ VIIRS DNB Calibration

- The day-night band (DNB) is a RSB.
- It is a unique panchromatic band, 0.5 to 0.9 mm, M4-M7
- Three gain stages: High gain (HG), middle gain (MG), low gain (LG),
- A radiometric dynamic range that spans over seven orders of magnitude
- Multiple aggregation mode (AM) in EV

DNB Background Response (DN0)

- OBC and EV DN0 Offsets
- DN0 Offsets Changes

Straylight Correction

• Poster, Hongda Chen et al

□ Summary

VIIRS DNB Calibration

Provided by Truman Wilson

Four detector arrays: one for LGS, one for MGS, and two for HGS

VIIRS DNB Calibration

30 SNPP/N21 25 ' 20 ۱ Modes 15 10 N2(5 1000 2000 3000 4000 Ο **Pixel Index**

Aggregation Modes (AM)

- In view of • OBCs: SV, SD, and BB, the **DNB AM** changes sequentially every two scans
- The three gain • stages are all active in OBCs

- DNB Earth view is divided into multiple aggregation Zones, each corresponding to one Aggregation mode (AM)
 - SNPP and J2, 32; NOAA-20, 22
 - Each of them needs to be calibrated independently

- LGS Gain Calculation
 - SD radiance:

$$L_{SD} = \cos\theta_{sd} \cdot RVS_{sd} \int BRF(\lambda)\tau_{sd} H(\lambda,t)RSR(\lambda) \frac{\Phi(\lambda)}{4\pi d^2} d\lambda$$

- SD-SUN angle, HAM relative response at SD AOI, transmittance of pinhole screen, SD degradation index, relative spectral response, solar spectral power distribution.
- Calculate LGS gain coefficient:

 $L_{SD} = c_1 \cdot dn$

- MGS and HGS Gain Calibration
 - Compute daily average gain ratio: MGS/LGS, HGS/MGS
 - MGS gain = LGS gain * MGS/LGS
 - HGS gain = MGS gain * (HGA/MGS + HGB/MGS)/2

SD

SNPP Calibration Performance

N20 Calibration Performance

- N20 LGS calibration coefficients trends (Mode/Detector/HAM) are very stable in entire mission
- Two families are observed in the ratios of MGS/LGS and HGS/MGS, mainly depending on detector locations.
- Gain ratios of HGS-to-LGS are roughly in one family for all detectors

J2 DNB Calibration Performance

- Dark Offset
 - Calculate dark trend using the minimum of SV/BB/SD data in the sun declination angle range, 40~140 degree.
 - Normalize dark trend at the pitch maneuver value (Mode, Det, HAM, Gain) for each instrument.
 - VROP data are used for SNPP DN0 after safe mode anomaly in 2021.

SNPP Dark Offsets

SNPP Dark Offsets

- The DN0 changes after each anomaly, especially in HGS large aggregation mode.
- The changes for HGA and HGB may be different.

N20 Dark Offsets

J2 Dark Offsets

01,D

01,J

2023

01,F

03,M

03,A

13

Summary

- SNPP/N20/J2 VIIRS DNB are in normal operations, and on-orbit calibration has been successfully performed.
- The DNB calibration coefficients for all detectors, HAM sides, gain stages, aggregation modes, and the three instruments, are stable and perform well.
- The DNB dark offsets perform well but may have discontinuities due to the instrument anomalies, especially for HGS.