Strong Aerosol Indirect Forcing from Increasing Low-cloud Coverage

Tianle Yuan

UMBC - GESTAR II NASA Goddard Space Flight Center

1

Co-authors: Hua Song¹, Chenxi Wang^{2,3}, Robert Wood⁴, Lazaros Oreopoulos³, Steven Platnick³, Hongbin Yu³, Kerry Meyer³, Eric Wilcox⁵

¹ SSAI, ²UMBC, ³GSFC, ⁴U. of Wash. ,⁵DRI

Funding from the NASA TerraAquaNPP / MEaSUREs programs

Introduction: Ship-tracks

Conover (1966) Anomalous cloud lines

Christensen et al., 2022 Excellent 'opportunistic experiments' for aerosol indirect effects

FIG. 2. Family of anomalous lines. California coast and islands south of Santa Barbara are shown on the right. Case 4.

Detection : ML method

Yuan et al (2019 & 2022)

Automatic detection of ship-tracks at both day and night time

Analysis method: Aerosol-cloud interactions

Study ACI

Detection and analysis

Yuan et al. (2022) First global climatology map of ship-tracks

Results: PDFs of bulk changes

Yuan et al. (2022b) PDFs of changes in cloud properties; high variance

Measurement-based

$$S = \frac{dA_c}{dN_d} = \frac{A_c(1-A_c)}{3N_d} \times \left(1 + \frac{5}{2} \frac{d\ln LWP}{d\ln N_d}\right)$$

Cloud albedo susceptibility

$$S^* = \frac{dA}{dN_d} = \frac{d(A_{ac}f_{ac} + A_s(1 - f_{ac}))}{dN_d} \approx f_c \times S + \frac{df_c}{dN_d} \times (A_c - A_s)$$

Scene albedo susceptibility

dlnLWP/dlnN_d systematically depends on background R_{eff} , N_d, and above cloud top RH. Similar to Toll et al. (2019) and refs. in Bellouin et al. (2020).

Drier air above clouds, more polluted and nonprecipitating low clouds tend to reduce LWP in response to ship-emitted aerosols.

Such behaviors are often explained by the competing effects of entrainment drying and aerosol-precipitation interactions.

CF strongly increases inside ship-tracks once clouds are clean and likely precipitating and the sensitivity is an exponential function of background R_e . Minimum CF change under relatively polluted background clouds (e.g. R_{eff} < 14 µm or N_d > 60 cm⁻³).

The sensitivity is quantitatively similar to what is reported in Possner et al. (2018).

Rosenfeld et al. (2006); Christensen and Stephens (2011); Goren and Rosenfeld (2012); Wang et al., (2011); Christensen et al. (2020); Possner et al. (2018); Gryspeerdt et al. (2016); Rosenfeld et al. (2019) etc.

CF change is proportional to the background cloud droplet size and precipitation frequency.

Forcing from three effects: CF effect is strong

- CF adjustment amounts to at least 59% of the Twomey effect, could be larger.
- LWP adjustment is close to zero when averaged over global ocean.
- The CF-effect may be a key driver for the uncertainty in total indirect forcing in low clouds.

Table: Forcing Using Different Explanatory Variables (W/m²)

Explanatory variable(s)	Cf Effect/Twomey
N _d only	59%
N _d and Cf	202%
N _d and RH	59%
N _d and SST	130%
N _d and EIS	68%
N _d , CF, and RH	193%
N _d , EIS, and RH	73%

Changes: Impact from shipping fuel regulation

- CF effect is strong and LWP effect is overall weak
- Forcing from CF adjustment could be as large as the Twomey effect
- 59% to 202% of the forcing from the Twomey effect is possible
- Precipitation-mediated processes are likely important
- Reducing the uncertainty of AIF due to CF effect is critical.