Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Song, Huihui; Huang, Bo; Zhang, Kaihua; Zhang, Hankui (2014). Spatio-spectral fusion of satellite images based on dictionary-pair learning. INFORMATION FUSION, 18, 148-160.

Abstract
This paper proposes a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning. By combining the spectral information from sensors with low spatial resolution but high spectral resolution (LSHS) and the spatial information from sensors with high spatial resolution but low spectral resolution (HSLS), this method aims to generate fused data with both high spatial and spectral resolution. Based on the sparse non-negative matrix factorization technique, this method first extracts spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatial unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, fused data are finally derived which are characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data. The experiments are carried out by comparing the proposed method with two representative methods on both simulation data and actual satellite images, including the fusion of Landsat/ETM+ and Aqua/MODIS data and the fusion of EO-1/Hyperion and SPOT5/HRG multispectral images. By visually comparing the fusion results and quantitatively evaluating them in term of several measurement indices, it can be concluded that the proposed method is effective in preserving both the spectral information and spatial details and performs better than the comparison approaches. (C) 2013 Elsevier B.V. All rights reserved.

DOI:
10.1016/j.inffus.2013.08.005

ISSN:
1566-2535; 1872-6305

NASA Home Page Goddard Space Flight Center Home Page