Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Bartalev, Svyatoslav S.; Kissiyar, Ouns; Achard, Frederic; Bartalev, Sergey A.; Simonetti, Dario (2014). Assessment of forest cover in Russia by combining a wall-to-wall coarseresolution land-cover map with a sample of 30 m resolution forest maps. INTERNATIONAL JOURNAL OF REMOTE SENSING, 35(7), 2671-2692.

Abstract
The process of gathering land-cover information has evolved significantly over the last decade (2000-2010). In addition to this, current technical infrastructure allows for more rapid and efficient processing of large multi-temporal image databases at continental scale. But whereas the data availability and processing capabilities have increased, the production of dedicated land-cover products with adequate accuracy is still a prerequisite for most users. Indeed, spatially explicit land-cover information is important and does not exist for many regions. Our study focuses on the boreal Eurasia region for which limited land-cover information is available at regional level.The main aim of this paper is to demonstrate that a coarse-resolution land-cover map of the Russian Federation, the TerraNorte' map at 230mx230m resolution for the year 2010, can be used in combination with a sample of reference forest maps at 30m resolution to correctly assess forest cover in the Russian federation.First, an accuracy assessment of the TerraNorte map is carried out through the use of reference forest maps derived from finer-resolution satellite imagery (Landsat Thematic Mapper (TM) sensor). A sample of 32 sites was selected for the detailed identification of forest cover from Landsat TM imagery. A methodological approach is developed to process and analyse the Landsat imagery based on unsupervised classification and cluster-based visual labelling. The resulting forest maps over the 32 sites are then used to evaluate the accuracy of the forest classes of the TerraNorte land-cover map. A regression analysis shows that the TerraNorte map produces satisfactory results for areas south of 65 degrees N, whereas several forest classes in more northern areas have lower accuracy. This might be explained by the strong reflectance of background (i.e. non-tree) cover.A forest area estimate is then derived by calibration of the TerraNorte Russian map using a sample of Landsat-derived reference maps (using a regression estimator approach). This estimate compares very well with the FAO FRA exercise for 2010 (1% difference for total forested area). We conclude that the TerraNorte map combined with finer-resolution reference maps can be used as a reliable spatial information layer for forest resources assessment over the Russian Federation at national scale.

DOI:
10.1080/01431161.2014.883099

ISSN:
0143-1161; 1366-5901

NASA Home Page Goddard Space Flight Center Home Page