Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Li, Hongyi; Tang, Zhiguang; Wang, Jian; Che, Tao; Pan, Xiaoduo; Huang, Chunlin; Wang, Xufeng; Hao, Xiaohua; Sun, Shaobo (2014). Synthesis method for simulating snow distribution utilizing remotely sensed data for the Tibetan Plateau. JOURNAL OF APPLIED REMOTE SENSING, 8, 84696.

Abstract
The complex terrain, shallow snowpack, and cloudy conditions of the Tibetan Plateau (TP) can greatly affect the reliability of different remote sensing (RS) data, and available station data are scarce for simulating and validating the snow distribution. Aiming at these problems, we design a synthesis method for simulating the snow distribution in the TP where the snow is patchy and shallow in most regions. Different RS data are assimilated into the SnowModel, using the ensemble Kalman filter method. The station observations are used for the validation of assimilated snow depth. To avoid the scale effect during validation, we design a random sampling comparison method by constructing a subjunctive region near each station. For years 2000 to 2008, the root-mean-square error of the assimilated results are in the range [0.002 m, 0.008 m], and the range of Pearson product-moment correlation coefficients between the in situ observations and the assimilated results are in the range [0.61, 0.87]. The result suggests that the snow depletion curve is the most important parameter for the simulation of the snow distribution in ungauged regions, especially in the TP where the snow is patchy and shallow. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

DOI:
10.1117/1.JRS.8.084696

ISSN:
1931-3195

NASA Home Page Goddard Space Flight Center Home Page