|
|
Zhao, Ming-Song; Rossiter, David G.; Li, De-Cheng; Zhao, Yu-Guo; Liu, Feng; Zhang, Gan-Lin (2014). Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index. ECOLOGICAL INDICATORS, 39, 120-133. Abstract Accurate estimates of the spatial variability of soil organic matter (SOM) are necessary to properly evaluate soil fertility and soil carbon sequestration potential. In plains and gently undulating terrains, soil spatial variability is not closely related to relief, and thus digital soil mapping (DSM) methods based on soil-landscape relationships often fail in these areas. Therefore, different predictors are needed for DSM in the plains. Time-series remotely sensed data, including thermal imagery and vegetation indices provide possibilities for mapping SOM in such areas. Two low-relief agricultural areas (Peixian County, 28 km x 28 km and Jiangyan County, 38 km x 50 km) in northwest and middle Jiangsu Province, east China, were chosen as case study areas. Land surface diurnal temperature difference (DTD) extracted from moderate resolution imaging spectroradiometer (MODIS) land surface temperature (LST), and soil-adjusted vegetation index (SAVI) at the peak of growing season calculated from Landsat ETM+ image were used as predictors. Regression kriging (RK) with a mixed linear model fitted by residual maximum likelihood (REML) and residuals interpolated by simple kriging (SK) were used to model and map SOM spatial distribution; ordinary kriging (OK) was used as a baseline comparison. The root mean squared error, mean error and mean absolute error calculated from leave-one-out cross-validation were used to assess prediction accuracy. Results showed that the proposed covariates provided added value to the observations. SAVI aggregated to MODIS resolution was able to identify local highs and lows not apparent from the DTD imagery alone. Despite the apparent similarity of the two areas, the spatial structure of residuals from the linear mixed models were quite different; ranges on the order of 3 km in Jiangyan but 16 km in Peixian, and accuracy of best models differed by a factor of two (3.3 g/kg and 6.3 g/kg SOM, respectively). This suggests that time-series remotely sensed data can provide useful auxiliary variable for mapping SOM in low-relief agricultural areas, with three important cautions: (1) image dates must be carefully chosen; (2) vegetation indices should supplement diurnal temperature differences, (3) model structure must be calibrated for each area. (C) 2014 Published by Elsevier Ltd. DOI: 10.1016/j.ecolind.2013.12.015 ISSN: 1470-160X; 1872-7034 |