Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Ogashawara, Igor; Alcantara, Enner H.; Curtarelli, Marcelo P.; Adami, Marcos; Nascimento, Renata F. F.; Souza, Arley F.; Stech, Jose L.; Kampel, Milton (2014). Performance Analysis of MODIS 500-m Spatial Resolution Products for Estimating Chlorophyll-a Concentrations in Oligo-to Meso-Trophic Waters Case Study: Itumbiara Reservoir, Brazil. REMOTE SENSING, 6(2), 1634-1653.

Abstract
Monitoring chlorophyll-a (chl-a) concentrations is important for the management of water quality, because it is a good indicator of the eutrophication level in an aquatic system. Thus, our main purpose was to develop an alternative technique to monitor chl-a in time and space through remote sensing techniques. However, one of the limitations of remote sensing is the resolution. To achieve a high temporal resolution and medium space resolution, we used the Moderate Resolution Imaging Spectroradiometer (MODIS) 500-m reflectance product, MOD09GA, and limnological parameters from the Itumbiara Reservoir. With these data, an empirical (O14a) and semi-empirical (O14b) algorithm were developed. Algorithms were cross-calibrated and validated using three datasets: one for each campaign and a third consisting of a combination of the two individual campaigns. Algorithm O14a produced the best validation with a root mean square error (RMSE) of 30.4%, whereas O14b produced an RMSE of 32.41% using the mixed dataset calibration. O14a was applied to MOD09GA to build a time series for the reservoir for the year of 2009. The time-series analysis revealed that there were occurrences of algal blooms in the summer that were likely related to the additional input of nutrients caused by rainfall runoff. During the winter, however, the few observed algal blooms events were related to periods of atmospheric meteorological variations that represented an enhanced external influence on the processes of mixing and stratification of the water column. Finally, the use of remote sensing techniques can be an important tool for policy makers, environmental managers and the scientific community with which to monitor water quality.

DOI:
10.3390/rs6021634

ISSN:
2072-4292

NASA Home Page Goddard Space Flight Center Home Page