Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Guo, Zheng; Chen, Yunhao; Cheng, Miaomiao; Jiang, Hong (2014). Near-surface air temperature retrieval from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) data. INTERNATIONAL JOURNAL OF REMOTE SENSING, 35(10), 3892-3914.

Abstract
Spatially distributed near-surface air temperature data are a very important input parameter for several land-surface models. Such data are often lacking because there are few traditional meteorological stations. It is of great significance in both theoretical research and practical applications to retrieve air temperature data from remote-sensing observations. Based on the radiative transfer theory, this article addresses the estimate of near-surface air temperature from data from the first Chinese operational geostationary meteorological satellite, FengYun-2C (FY-2C), in two thermal infrared channels (IR1, 10.3-11.3 mu m and IR2, 11.5-12.5 mu m) and the MODIS atmospheric profile (MOD07) product, which provide profiles of water vapour and air temperature in different atmospheric layers. The algorithm involves only two essential parameters (transmittance and emissivity). Sensitivity analysis of the algorithm has been performed for evaluation of probable near-surface air temperature estimation error due to the possible errors in transmittance and emissivity. Results from the analysis indicate that the proposed algorithm is able to provide an accurate estimation of near-surface air temperature from FY-2C data. Results from the sensitivity analysis indicate that the average air temperature estimation error is less than 1.2 K for a possible transmittance error of 0.05 in both channels under an emissivity range 0.95-0.98. Assuming an error of 0.005 in ground emissivity for the two thermal channels, the average near-surface air temperature error is 0.6 K. Measured air temperature datasets have been used to validate the algorithm. All the validated data indicate that the estimate error is less than 3 K in more than 80% of the samples. The high accuracy for this dataset confirms the applicability of the proposed algorithm as an alternative method for accurate near-surface air temperature retrieval from FY-2C data.

DOI:
10.1080/01431161.2014.919674

ISSN:
0143-1161; 1366-5901

NASA Home Page Goddard Space Flight Center Home Page