Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Suman, M. N. Sai; Gadhavi, H.; Kiran, V. Ravi; Jayaraman, A.; Rao, S. V. B. (2014). Role of Coarse and Fine Mode Aerosols in MODIS AOD Retrieval: a case study over southern India. ATMOSPHERIC MEASUREMENT TECHNIQUES, 7(4), 907-917.

Abstract
In the present study we compare the MODIS (Moderate Resolution Imaging Spectroradiometer) derived aerosol optical depth (AOD) data with that obtained from operating sky-radiometer at a remote rural location in southern India (Gadanki, 13.45 degrees N, 79.18 degrees E) from April 2008 to March 2011. While the comparison between total (coarse mode + fine mode) AODs shows correlation coefficient (R) value of about 0.71 for Terra and 0.77 for Aqua, if one separates the AOD into fine and coarse mode, the comparison becomes very poor, particularly for fine mode with an R value of 0.44 for both Terra and Aqua. The coarse mode AOD derived from MODIS and sky-radiometer compare better with an R value of 0.74 for Terra and 0.66 for Aqua. The seasonal variation is also well captured by both ground-based and satellite measurements. It is shown that both the total AOD and fine mode AOD are significantly underestimated with slope of regression line 0.75 and 0.35 respectively, whereas the coarse mode AOD is overestimated with a slope value of 1.28 for Terra. Similar results are found for Aqua where the slope of the regression line for total AOD and fine mode AOD are 0.72 and 0.27 whereas 0.95 for coarse mode. The fine mode fraction derived from MODIS data is less than one-half of that derived from the sky-radiometer data. Based on these observations and comparison of single scattering albedo observed using sky-radiometer with that of MODIS aerosol models, we argue that the selection of aerosol types used in the MODIS retrieval algorithm may not be appropriate particularly in the case of southern India. Instead of selecting a moderately absorbing aerosol model (as being done currently in the MODIS retrieval) a more absorbing aerosol model could be a better fit for the fine mode aerosols, while reverse is true for the coarse mode aerosols, where instead of using "dust aerosols" which is relatively absorbing type, usage of coarse sea-salt particles which is less absorbing is more appropriate. However, not all the differences could be accounted based on aerosol model, other factors like errors in retrieval of surface reflectance may also be significant in causing underestimation of AOD by MODIS.

DOI:
10.5194/amt-7-907-2014

ISSN:
1867-1381; 1867-8548

NASA Home Page Goddard Space Flight Center Home Page