|
|
Zhu, Wenbin; Jia, Shaofeng; Lv, Aifeng (2014). Monitoring the Fluctuation of Lake Qinghai Using Multi-Source Remote Sensing Data. REMOTE SENSING, 6(11), 10457-10482. Abstract The knowledge of water storage variations in ungauged lakes is of fundamental importance to understanding the water balance on the Tibetan Plateau. In this paper, a simple framework was presented to monitor the fluctuation of inland water bodies by the combination of satellite altimetry measurements and optical satellite imagery without any in situ measurements. The fluctuation of water level, surface area, and water storage variations in Lake Qinghai were estimated to demonstrate this framework. Water levels retrieved from ICESat (Ice, Cloud, and and Elevation Satellite) elevation data and lake surface area derived from MODIS (Moderate Resolution Imaging Spectroradiometer) product were fitted by linear regression during the period from 2003 to 2009 when the overpass time for both of them was coincident. Based on this relationship, the time series of water levels from 1999 to 2002 were extended by using the water surface area extracted from Landsat TM/ETM+ images as inputs, and finally the variations of water volume in Lake Qinghai were estimated from 1999 to 2009. The overall errors of water levels retrieved by the simple method in our work were comparable with other globally available test results with r = 0.93, MAE = 0.07 m, and RMSE = 0.09 m. The annual average rate of increase was 0.11 m/yr, which was very close to the results obtained from in situ measurements. High accuracy was obtained in the estimation of surface areas. The MAE and RMSE were only 6 km(2), and 8 km(2), respectively, which were even lower than the MAE and RMAE of surface area extracted from Landsat TM images. The estimated water volume variations effectively captured the trend of annual variation of Lake Qinghai. Good agreement was achieved between the estimated and measured water volume variations with MAE = 0.4 billion m(3), and RMSE = 0.5 billion m(3), which only account for 0.7% of the total water volume of Lake Qinghai. This study demonstrates that it is feasible to monitor comprehensively the fluctuation of large water bodies based entirely on remote sensing data. DOI: 10.3390/rs61110457 ISSN: 2072-4292 |