Skip all navigation and jump to content Jump to site navigation
About MODIS News Data Tools /images2 Science Team Science Team Science Team

   + Home
ABOUT MODIS
MODIS Publications Link
MODIS Presentations Link
MODIS Biographies Link
MODIS Science Team Meetings Link
 

 

 

Gao, Bo; Jia, Li; Wang, Tianxing (2014). Derivation of Land Surface Albedo at High Resolution by Combining HJ-1A/B Reflectance Observations with MODIS BRDF Products. REMOTE SENSING, 6(9), 8966-8985.

Abstract
Land surface albedo is an essential parameter for monitoring global/regional climate and land surface energy balance. Although many studies have been conducted on global or regional land surface albedo using various remote sensing data over the past few decades, land surface albedo product with a high spatio-temporal resolution is currently very scarce. This paper proposes a method for deriving land surface albedo with a high spatio-temporal resolution (space: 30 m and time: 2-4 days). The proposed method works by combining the land surface reflectance data at 30 m spatial resolution obtained from the charge-coupled devices in the Huanjing-1A and -1B (HJ-1A/B) satellites with the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface bidirectional reflectance distribution function (BRDF) parameters product (MCD43A1), which is at a spatial resolution of 500 m. First, the land surface BRDF parameters for HJ-1A/B land surface reflectance with a spatial-temporal resolutions of 30 m and 2-4 day are calculated on the basis of the prior knowledge from the MODIS BRDF product; then, the calculated high resolution BRDF parameters are integrated over the illuminating/viewing hemisphere to produce the white-and black-sky albedos at 30 m resolution. These results form the basis for the final land surface albedo derivation by accounting for the proportion of direct and diffuse solar radiation arriving at the ground. The albedo retrieved by this novel method is compared with MODIS land surface albedo products, as well as with ground measurements. The results show that the derived land surface albedo during the growing season of 2012 generally achieved a mean absolute accuracy of +/- 0.044, and a root mean square error of 0.039, confirming the effectiveness of the newly proposed method.

DOI:
10.3390/rs6098966

ISSN:
2072-4292

NASA Home Page Goddard Space Flight Center Home Page