Publications

Ali, G; Bao, YS; Ullah, W; Ullah, S; Guan, Q; Liu, XL; Li, L; Lei, YH; Li, GW; Ma, J (2020). Spatiotemporal Trends of Aerosols over Urban Regions in Pakistan and Their Possible Links to Meteorological Parameters. ATMOSPHERE, 11(3), 306.

Abstract
Aerosol optical depth (AOD) has become one of the most crucial parameters for climate change assessment on regional and global scales. The present study investigates trends in AOD using long-term data derived from moderate resolution imaging spectro-radiometer (MODIS) over twelve regions in Pakistan. Different statistical tests are used to assess the annual and seasonal trends in AOD. Results reveal increasing AOD trends over most of the selected regions with an obvious increase over the north and northeastern parts of the study area. Annually, increasing trends (0.0002-0.0047 year(-1)) were observed over seven regions, with three being statistically significant. All the selected regions experience increasing AOD trends during the winter season with six being statistically significant while during the summer season seven regions experience increasing AOD trends and the remaining five exhibit the converse with two being statistically significant. The changes in the sign and magnitude of AOD trends have been attributed to prevailing meteorological conditions. The decreasing rainfall and increasing temperature trends mostly support the increasing AOD trend over the selected regions. The high/low AOD phases during the study period may be ascribed to the anomalies in mid-tropospheric relative humidity and wind fields. The summer season is generally characterized by high AOD with peak values observed over the regions located in central plains, which can be attributed to the dense population and enhanced concentration of industrial and vehicular emissions over this part of the study area. The results derived from the present study give an insight into aerosol trends and could form the basis for aerosol-induced climate change assessment over the study area.

DOI:
10.3390/atmos11030306

ISSN: