Publications

Ouyang, W; Wan, XY; Xu, Y; Wang, XL; Lin, CY (2020). Vertical difference of climate change impacts on vegetation at temporal-spatial scales in the upper stream of the Mekong River Basin. SCIENCE OF THE TOTAL ENVIRONMENT, 701, 134782.

Abstract
As the upper section of the Mekong River Basin, the vegetation quality of the Lancang River Basin (LRB) and the related ecological functions are critical for the whole basin. With time-series Moderate Resolution Imaging Spectroradiometer (MODIS) images from 2000 to 2015 and local daily climatic data since 1976, their vertical interaction differences were identified. The results showed that the spatial variation in Normalized difference vegetation index (NDVI) of grassland and forest were sensitive to elevation. The NDVI value in the southern area at elevations less than 3000 m was more than 0.80 and decreased to 0.30-0.60 with elevations higher than 4500 m. The general vegetation quality showed a positive trend under climate change over 16 years. The M-K test of daily precipitation and temperature from 12 local weather stations showed that the basin temperature varied more significantly than precipitation. The temporal correlation between NDVI with precipitation as well as temperature at each pixel indicated that temperature was the dominant factor affecting grassland and forest dynamics in the LRB. The interaction between vegetation and climate was more sensitive at elevations lower than 3000 m. Based on the RCP4.5 scenario, the future temperature distribution was predicted, and its impact on NDVI was simulated at the pixel scale. Under future drier and warmer climate conditions, the responded NDVI in the upper stream with higher elevation may increase soil erosion and decrease streamflow. The NDVI in the downstream area will be improved and be able to adapt to the related climate impacts. Because of the large amount of water and biomass in this basin, higher temperatures will accelerate the decomposition of forest foliar litter. Thus, more organic carbon and forest diffuse pollution will be discharged into the water, potentially affecting the water quality of the whole basin. (C) 2019 Elsevier B.V. All rights reserved.

DOI:
10.1016/j.scitotenv.2019.134782

ISSN:
0048-9697