Publications

Wang, ZC; Gao, ZQ (2022). Dynamic monitoring of flood disaster based on remote sensing data cube. NATURAL HAZARDS, 114(3), 3123-3138.

Abstract
High-frequency dynamic monitoring of flood disaster using remote sensing technology is crucial for accurate decision-making of disaster prevention and relief. However, the current trade-off between spatial and temporal resolution of remote sensing sensors limits their application in high-frequency dynamic monitoring of flood disaster. To deal with this challenge, in this study, we presented an approach to conduct high-frequency dynamic monitoring of flood disaster based on remote sensing data cube with high spatial and temporal resolution. The presented approach included two steps: a, removing the cloudy areas in original MODIS data to construct the cloud-free MODIS data cube by using the information provided by GPM rainfall data; b, fusing the cloud-free MODIS data cube and Landsat-8 data by using the spatiotemporal data fusion algorithm to construct the high spatiotemporal resolution (Landsat-like) data cube. The approach was tested by conducting high-frequency dynamic monitoring of flood disaster occurred in Henan Province, PR China. Our study had three main results: (1) the presented cloud removal algorithm in the first step was able to retain flood information and performed well in removing clouds during consecutive rainy days. The differences between cloud-free MODIS data cube and original MODIS data were small and the cloud-free MODIS data cube could be used for constructing high spatiotemporal resolution data cube. (2) Our presented approach could be used to conduct high-frequency dynamic monitoring of flood disaster. (3) Testing results showed that there were two floods occurred in the study area from July 17, 2021, to October 16, 2021; the first flood occurred from July 17, 2021, to September 15, 2021, with maximum affected area of 668.36 km(2); the second flood occurred from September 18, 2021, to October 16, 2021, with maximum affected area of 303.88 km(2). Our study provides a general approach for high-frequency monitoring of flood disaster.

DOI:
10.1007/s11069-022-05508-3

ISSN:
1573-0840