Publications

Meng, XY; Liu, YQ; Qin, Y; Wang, WP; Zhang, MX; Zhang, K (2022). Adaptability of MODIS Daily Cloud-Free Snow Cover 500 m Dataset over China in Hutubi River Basin Based on Snowmelt Runoff Model. SUSTAINABILITY, 14(7), 4087.

Abstract
Global warming affects the hydrological characteristics of the cryosphere. In arid and semi-arid regions where precipitation is scarce, glaciers and snowmelt water assume important recharge sources for downstream rivers. Therefore, the simulation of snowmelt water runoff in mountainous areas is of great significance in hydrological research. In this paper, taking the Hutubi River Basin in the Tianshan Mountains as the study area, we used the MODIS Daily Cloud-free Snow Cover 500 m Dataset over China (MODIS CGF SCE) to carry out the Snowmelt Runoff Model (SRM) simulation and evaluated the simulation accuracy. The results showed that: (1) The SRM preferably simulated the characteristics of the average daily flow variation of the Hutubi River from May to October, from 2003-2009. The monthly total runoff was maximum in July and minimum in October. Extreme precipitation events influenced the formation of flood peaks, and the interannual variation trend of total runoff from May to October was increased. (2) The mean value of the volume difference (Dv) during the model validation period was 8.85%, and the coefficient of determination (R-2) was 0.73. In general, the SRM underestimates the runoff of the Hutubi River, and the simulation accuracy is more accurate in the normal water period than in the high-water period. (3) By analyzing MODIS CGF SCE from 2003 to 2009, areas above 3200 m elevation in the Hutubi River Basin were classified as permanent snow areas, and areas below 3200 m were classified as seasonal snow areas. In October, the snow area in the Hutubi River Basin gradually increased, and the increase in snow cover in the permanent snow area was greater than that in the seasonal snow area. The snowmelt period was from March to May in the seasonal snow area and from May to early July in the permanent snow area, and the minimum snow cover was 0.7%.

DOI:
10.3390/su14074067

ISSN:
2071-1050