Publications

Ke, LH; Zhang, JS; Fan, CY; Zhou, JJ; Song, CQ (2022). Large-Scale Monitoring of Glacier Surges by Integrating High-Temporal- and -Spatial-Resolution Satellite Observations: A Case Study in the Karakoram. REMOTE SENSING, 14(18), 4668.

Abstract
Glacier surges have been increasingly reported from the mountain and high-latitude cryosphere. They represent active glaciological processes that affect the evolution of natural landscapes, and they possibly lead to catastrophic consequences, such as ice collapse, which threatens the downstream communities. Identifying and monitoring surge-type glaciers has been challenging due to the irregularity of the behavior and limitations on the spatiotemporal coverage of remote-sensing observations. With a focus on the Karakoram region, with concentrated surge-type glaciers, we present a new method to efficiently detect glacier-surging activities by integrating the high temporal resolution of MODIS imagery and the long-term archived medium spatial resolution of Landsat imagery. This method first detects the location and initial time of glacier surges by trend analysis (trend and breakpoint) from MODIS data, which is implemented by the Breaks for Additive Seasonal and Trend (BFAST) tool. The initial location and time information is then validated with the detailed surging features, such as the terminus-position changes from Landsat, and the thickness-change patterns from surface-elevation-change maps. Our method identified 74 surging events during 2000-2020 in the Karakoram, including three tributary-glacier surges, and seven newly detected surge-type glaciers. The surge-type glaciers tend to have longer lengths and smaller mean slopes compared with nonsurge-type glaciers. A comparison with previous studies demonstrated the method efficiency for detecting the surging of large-scale and mesoscale glaciers, with limitations on small and narrow glaciers due to the spatial-resolution limitation of MODIS images. For the 38 surge-type nondebris-covered glaciers, we provide details of the surging, which depict the high variability (heavy-tailed distribution) in the surging parameters in the region, and the concentration of the surge initiation during 2008-2010 and 2013-2015. The updated glacier-surging information solidifies the basis for a further investigation of the surging processes at polythermal glaciers, and for an improved assessment of the glacier-mass balance and monitoring of glacier hazards.

DOI:
10.3390/rs14184668

ISSN:
2072-4292