Publications

Watanabe, T; Oka, K; Hijioka, Y (2022). Quantification of Effects of Errors in the Cloud Properties on the Representation of the Surface Downward Shortwave Flux Based on MERRA-2 in Japan. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 61(10), 1509-1532.

Abstract
The evaluation of the representation of the surface downward shortwave flux (DSF) from atmospheric reanalysis data products is required to obtain reliable information for the resource assessment of surface solar energy. The representation of the DSF from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), reanalysis data product was evaluated using surface solar radiation from ground-based observations in Japan. The cloud fraction (CFR) and cloud optical thickness (COT) from Moderate Resolution Imaging Spectroradiometer (MODIS) were also used as references. The CFR from MERRA-2 tends to be smaller than that from MODIS, and the correlation between the difference in the CFR and that in the DSF is negative. The correlation between the difference in the COT and that in the DSF is weakly negative. To quantify the effects of the difference in the CFR and COT to that of the DSF, a regression model based on an artificial neural network architecture that emulates the process of the DSF in MERRA-2 was constructed. Numerical experiments using the emulator quantify contributions of each of the differences in the CFR and COT and joint contributions of the two variables. In addition, a cluster analysis was performed to clarify the differences in the seasonal changes in the monthly mean bias error (MBE) in the DSF among ground observation stations, and three clusters were identified. Contributions of the differences in the CFR and COT to the seasonal change in the monthly MBE were also clarified using the results of the numerical experiments.

DOI:
10.1175/JAMC-D-21-0249.1

ISSN:
1558-8432