Publications

He, YT; Wu, PH; Ma, XS; Wang, J; Wu, YL (2022). Physical-Based Spatial-Spectral Deep Fusion Network for Chlorophyll-a Estimation Using MODIS and Sentinel-2 MSI Data. REMOTE SENSING, 14(22), 5828.

Abstract
Satellite-derived Chlorophyll-a (Chl-a) is an important environmental evaluation indicator for monitoring water environments. However, the available satellite images either have a coarse spatial or low spectral resolution, which restricts the applicability of Chl-a retrieval in coastal water (e.g., less than 1 km from the shoreline) for large- and medium-sized lakes/oceans. Considering Lake Chaohu as the study area, this paper proposes a physical-based spatial-spectral deep fusion network (PSSDFN) for Chl-a retrieval using Moderate Resolution Imaging Spectroradiometer (MODIS) and Sentinel-2 Multispectral Instrument (MSI) reflectance data. The PSSDFN combines residual connectivity and attention mechanisms to extract effective features, and introduces physical constraints, including spectral response functions and the physical degradation model, to reconcile spatial and spectral information. The fused and MSI data were used as input variables for collaborative retrieval, while only the MSI data were used as input variables for MSI retrieval. Combined with the Chl-a field data, a comparison between MSI and collaborative retrieval was conducted using four machine learning models. The results showed that collaborative retrieval can greatly improve the accuracy compared with MSI retrieval. This research illustrates that the PSSDFN can improve the estimated accuracy of Chl-a for coastal water (less than 1 km from the shoreline) in large- and medium-sized lakes/oceans.

DOI:
10.3390/rs14225828

ISSN:
2072-4292