Publications

Korchemkina, EN; Kalinskaya, DV (2022). Algorithm of Additional Correction of Level 2 Remote Sensing Reflectance Data Using Modelling of the Optical Properties of the Black Sea Waters. REMOTE SENSING, 14(4), 831.

Abstract
Atmospheric correction of satellite optical data is based on an assessment of the optical characteristics of the atmosphere, such as the aerosol optical depth of the atmosphere and the spectral slope of its spectrum, the so-called Angstrom parameter. Inaccurate determination of these parameters is one of the causes of errors in the retrieval of the remote sensing reflectance spectra. In this work, the obtained large array of field and satellite data for the northeastern part of the Black Sea is used, including ship-based measurements of atmospheric characteristics and sea reflectance, MODIS Aqua/Terra and OLCI Sentinel-3 A/B Level 2 remote sensing reflectance and atmospheric data. The purpose of this study is to show the numerical differences between the atmospheric parameters measured from the surface level and from the satellite and demonstrate their relationship with the differences between in situ and satellite remote sensing reflectance. Based on the information received, we propose an algorithm for the additional correction of satellite Level 2 data that uses a two-parametric model of the Black Sea remote sensing reflectance as a first approximation. This method does not require any in situ information. It is shown that additional correction significantly reduces the discrepancy between in situ and retrieved remote sensing reflectance, especially in short-wave spectral bands.

DOI:
10.3390/rs14040831

ISSN:
2072-4292