Publications

Sismanidis, P; Bechtel, B; Perry, M; Ghent, D (2022). The Seasonality of Surface Urban Heat Islands across Climates. REMOTE SENSING, 14(10), 2318.

Abstract
In this work, we investigate how the seasonal hysteresis of the Surface Urban Heat Island Intensity (SUHII) differs across climates and provide a detailed typology of the daytime and nighttime SUHII hysteresis loops. Instead of the typical tropical/dry/temperate/continental grouping, we describe Earth's climate using the Koppen-Geiger system that empirically maps Earth's biome distribution into 30 climate classes. Our thesis is that aggregating multi-city data without considering the biome of each city results in temporal means that fail to reflect the actual SUHII characteristics. This is because the SUHII is a function of both urban and rural features and the phenology of the rural surroundings can differ considerably between cities, even in the same climate zone. Our investigation covers all the densely populated areas of Earth and uses 18 years (2000-2018) of land surface temperature and land cover data from the European Space Agency's Climate Change Initiative. Our findings show that, in addition to concave-up and -down shapes, the seasonal hysteresis of the SUHII also exhibits twisted, flat, and triangle-like patterns. They also suggest that, in wet climates, the daytime SUHII hysteresis is almost universally concave-up, but they paint a more complex picture for cities in dry climates.

DOI:
10.3390/rs14102318

ISSN:
2072-4292