Publications

Zhang, H; Li, HY; Li, HJ (2022). Monitoring the Ice Thickness in High-Order Rivers on the Tibetan Plateau with Dual-Polarized C-Band Synthetic Aperture Radar. REMOTE SENSING, 14(11), 2591.

Abstract
River ice on the Tibetan Plateau has important impacts on the ecosystem and hydrology. High-resolution Synthetic Aperture Radar (SAR) is an important tool for monitoring the thickness of river ice in high-altitude areas without ground data. However, due to the complex topography and narrow width, it remains challenging to monitor the ice thickness of high-order rivers (high-level branches in the plateau river system) on the Tibetan Plateau using SAR. Therefore, this paper focuses on inverting the ice thickness by utilizing dual-polarized C-band radar data. We select a typical watershed in the northeastern Tibetan Plateau, namely, the Babao River basin (including the Babao River and Binggou River), as the study area. The results show the following: (1) Dual-polarized C-band radar data have the potential to monitor the ice thickness of high-order rivers. The RMSEs of the Babao and Binggou Rivers are 0.109 m and 0.258 m, respectively. (2) Ascending and descending orbit radar images perform differently in retrieving the ice thicknesses of rivers with different directions. (3) The thickness of river ice affects the inversion accuracy. (4) Polarization parameters have varying explanatory capacities depending on the river characteristics. Our findings can provide a reference for the subsequent development of highly generalizable river ice inversion equations using dual-polarized radar data.

DOI:
10.3390/rs14112591

ISSN:
2072-4292