Publications

Zhu, WY; Zhang, ZK; Zhao, SH; Guo, XY; Das, P; Feng, SM; Liu, BL (2022). Vegetation Greenness Trend in Dry Seasons and Its Responses to Temperature and Precipitation in Mara River Basin, Africa. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 11(8), 426.

Abstract
The Mara River Basin of Africa has a world-famous ecosystem with vast vegetation, which is home to many wild animals. However, the basin is experiencing vegetation degradation and bad climate change, which has caused conflicts between people and wild animals, especially in dry seasons. This paper studied the vegetation greenness (VG), vegetation greenness trends (VGT), and their responses to climate change in dry seasons in the Mara River Basin, Africa. Firstly, based on Google Earth Engine (GEE) platform and Sentinel-2 images, the vegetation distribution map of the Mara River Basin was drawn. Then dry seasons MODIS NDVI data (January to February and June to September) were used to analyze the VGT. Finally, a random forest regression algorithm was used to evaluate the response of VG and VGT to temperature and precipitation derived from ERA5 from 2000 to 2019 at a resolution of 250 m. The results showed that the VGT was fluctuating in dry seasons, and the spatial differentiation was obvious. The greenness increasing trends both upstream and downstream were significantly larger than that of in the midstream. The responses of VG to precipitation were almost twice larger than temperature, and the responses of VGT to temperature were about 1.5 times larger than precipitation. The climate change trend of rising temperature and falling precipitation will lead to the degradation of vegetation and the reduction of crop production. There will be a vegetation degradation crisis in dry seasons in the Mara River Basin in the future. Identifying the spatiotemporal changes of VGT in dry seasons will be helpful to understand the response of VG and VGT to climate change and could also provide technical support to cope with climate-change-related issues for the basin.

DOI:
10.3390/ijgi11080426

ISSN:
2220-9964