Publications

Hu, Y; Tan, JG; Grimmond, S; Ao, XY; Yan, YF; Liu, DW (2022). Observed and Modeled Urban Heat Island and Sea-Breeze Circulation Interactions: A Shanghai Case Study. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 61(3), 239-259.

Abstract
Urban heat island (UHI) and sea-land-breeze systems are well-known and important characteristics of the climate of coastal cities. To model these, the accurate estimation of the surface energy balance (SEB) is a key factor needed to improve local-scale simulations of thermodynamic and dynamic boundary circulations. The Weather Research and Forecasting Model with a single-layer urban canopy model (WRF/SLUCM), with parameters derived from MODIS and local GIS information, is used to investigate the UHI and sea-breeze circulations (SBC) in the megacity of Shanghai. The WRF/SLUCM can reproduce observed urban radiation and SEB fluxes, near-surface meteorological variables, and the evolution of the UHI and SBC. Simulations for an August period show the maximum UHI tends to drift northwest in the afternoon, driven by the prevailing southeast wind. The sea breeze lasts for about 4 h and is strongest between 1200 and 1400 local time (UTC + 8 h). The interaction between UHI and SBC is evident with low-level convergence, upward motion, and moisture transport from the sea and urban breezes simulated. An urban circulation (horizontal/vertical/time scales: similar to 20 km/similar to 1.5 km/similar to 3 h) with thermal vertical motions (similar to 1.5 m s(-1)) above the urban area and an SBC (horizontal/vertical/time scales: 6-7 km/similar to 1 km/2-3-h) above the northern coastal suburb occur. Combined the sea breeze and southerly winds form a low-level wind shear (convergence zone) similar to 5 km from the coast that penetrates similar to 20 km inland to the urban center. Using the WRF/SLUCM simulations we improve understanding of the complex spatial dynamics of summertime urban heating in coastal megacities, such as Shanghai.

DOI:
10.1175/JAMC-D-20-0246.1

ISSN:
1558-8432