Publications

Sun, YP; Gao, PP; Tariq, S; Shahzad, H; Mehmood, U; ul Haq, Z (2023). Analysis of aerosol optical depth and relation to covariates during pre-monsoon season (2002-2019) over Pakistan using ARIMAX model and cross-wavelet analysis. ENVIRONMENTAL RESEARCH, 233, 116436.

Abstract
The pre-monsoon season heavily influences the precipitation amount in Pakistan. When hydrometeorological parameters interact with aerosols from multiple sources, a radiative climatic response is observed. In this study, aerosol optical depth (AOD) space-time dynamics were analyzed in relation to meteorological factors and surface parameters during the pre-monsoon season in the years 2002-2019 over Pakistan. Level-3 (L3) monthly datasets from Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging Spectroradiometer (MISR) were used. Tropical Rainfall Measuring Mission (TRMM) derived monthly precipitation, Atmospheric Infrared Sounder (AIRS) derived air temperature, after moist relative humidity (RH) from Modern-Era Retrospective analysis for Research and Applications, Version-2 (MERRA-2), near-surface wind speed, and soil moisture data derived from Global Land Data Assimilation System (GLDAS) were also used on a monthly time scale. For AOD trend analysis, Mann-Kendall (MK) trend test was applied. Moreover, Autoregressive Integrated Moving Average with Explanatory variable (ARIMAX) technique was applied to observe the actual and predicted AOD trend, as well as test the multicollinearity of AOD with covariates. The periodicities of AOD were analyzed using continuous wavelet transformation (CWT) and the cross relationships of AOD with prevailing covariates on a time-frequency scale were analyzed by wavelet coherence analysis. A high variation of aerosols was observed in the spatiotemporal domain. The MK test showed a decreasing trend in AOD which was most significant in Baluchistan and Punjab, and the overall trend differs between MODIS and MISR datasets. ARIMAX model shows the correlation of AOD with varying meteorological and soil parameters. Wavelet analysis provides the abundance of periodicities in the 2-8 months periodic cycles. The coherency nature of the AOD time series along with other covariates manifests leading and lagging effects in the periodicities. Through this, a notable difference was concluded in space-time patterns between MODIS and MISR datasets. These findings may prove useful for shortterm and long-term studies including oscillating features of AOD and covariates.

DOI:
10.1016/j.envres.2023.116436

ISSN:
1096-0953