Publications

Zhang, SC; Ma, ZM; Liu, Q; Hu, SW; Feng, YX; Zhao, HB; Guo, QY (2023). POBI interpolation algorithm for CYGNSS near real time flood detection research: A case study of extreme precipitation events in Henan, China in 2021. ADVANCES IN SPACE RESEARCH, 71(6), 2862-2878.

Abstract
In late 2016, NASA launched the first constellation of the global navigation satellite system reflectometry (GNSS-R) small satellites called the Cyclone Global Navigation Satellite System (CYGNSS). The stable data quality and continuous free availability of CYGNSS scientific data provided a new method for flood monitoring. However, owing to the pseudorandom distribution of CYGNSS data, researchers must always choose between high temporal resolution and high spatial resolution during the performance of flood monitor-ing based on CYGNSS data. For floods caused by extreme precipitation with sudden and short durations, the current flood mapping based on CYGNSS data cannot be updated in near real time. However, the near real time update of the flood distribution range is mean-ingful for postdisaster emergency response and rapid rescue. This study aimed to address this problem using a newly proposed spatial interpolation method based on previously observed behaviour (POBI). First, a method for calculating the surface reflectivity of the CYGNSS was introduced, followed by the principle of the POBI spatial interpolation method. The applicability of the POBI method in Henan Province, China, was then analysed, and by using the flood in Henan Province, China, in July 2021 as an example, the feasi-bility of CYGNSS near real time flood mapping based on the POBI method was evaluated. Based on the results, near real time and 3 km flood distribution monitoring results can be obtained using the proposed new method. The results were evaluated using MODIS (Moder-ate Resolution Imaging Spectroradiometer) images and compared with the observations of SMAP (Soil Moisture Active Passive) and GPM (Global Precipitation Measurement) in the same period. The results show that the flooded areas obtained by CYGNSS correspond to the inundated areas in MODIS images and are also in high agreement with the SMAP. In addition, CYGNSS allows for finer mapping and quantification of inundation areas and flood duration. Moreover, we also discussed the potential of CYGNSS to detect floods in shorter periods of time (a few hours) and did a preliminary evaluation using precipitation data from meteorological stations. The results are also highly consistent.(c) 2022 COSPAR. Published by Elsevier B.V. All rights reserved.

DOI:
10.1016/j.asr.2022.11.016

ISSN:
1879-1948