Publications

Liu, J; Wei, LH; Zheng, ZP; Du, JL (2023). Vegetation cover change and its response to climate extremes in the Yellow River Basin. SCIENCE OF THE TOTAL ENVIRONMENT, 905, 167366.

Abstract
Extreme climate events have increased in frequency and severity under the background of climate change, with vegetation growth exhibiting a sensitive response to them. By assimilating GIMMS NDVI and MODIS NDVI using the Residual Network, we obtained a long time series and high resolution NDVI dataset of the Yellow River Basin (YRB). The dataset was utilized for examining the spatiotemporal variability of NDVI and analyzing the response of vegetation cover to climate extremes with meteorological data. Our findings reveal the following: (1) A sig-nificant rise in NDVI was seen in the YRB, displaying a mean growth rate of 0.019/10a (p < 0.001). However, seasonal differences exist. The mean NDVI of multi-year declines from southeast to northwest, while the overall trend of vegetation cover improves. (2) The NDVI response to extreme temperature exhibits noticeable spatio-temporal differences. Daytime extreme high temperature in the northern YRB is negatively correlated with NDVI, while they are positively correlated in the lower YRB and the southern part of the middle YRB. Nighttime extreme high temperature exhibits a positive correlation with NDVI. Overall, NDVI displays a stronger response to extreme precipitation than to extreme temperature, with a negative correlation with CWD and a positive correlation with PRCPTOT. (3) The NDVI demonstrates a lagged response to climate extremes in the YRB, with a greater lag in response to extreme temperature than extreme precipitation. The research findings can provide scientific support for the future management and planning of vegetation in the YRB, as well as contribute to the promotion of ecological environment regulation and sustainable development.

DOI:
10.1016/j.scitotenv.2023.167366

ISSN:
1879-1026